Featured Research

from universities, journals, and other organizations

Biochemists Reduce Sickling, Progression of Sickle Cell Disease in Mice

Date:
May 16, 2014
Source:
University of Texas Health Science Center at Houston
Summary:
New preclinical research on the molecular mechanisms responsible for sickle cell disease could aid efforts to develop much needed treatments for this devastating blood disorder that affects millions worldwide. The sickling of red blood cells is the hallmark of this disease. Normally shaped like a donut, the diseased cells instead have a crescent-like appearance. This can lead to anemia, chest pain, lung problems and stroke.

UTHealth scientists working to learn more about the fundamental causes of sickle cell disease are from left to right Anren Song, Ph.D., Kaiqi Sun, Yang Xia, M.D., Ph.D., and Yujin Zhang, Ph.D.
Credit: The University of Texas Health Science Center at Houston (UTHealth)

New preclinical research on the molecular mechanisms responsible for sickle cell disease could aid efforts to develop much needed treatments for this devastating blood disorder that affects millions worldwide.

At the present time, hydroxyurea is the only Food and Drug Administration-approved medication that decreases the number of pain crises and episodes of acute chest syndrome.

An international research team led by biochemists at The University of Texas Health Science Center at Houston (UTHealth) reduced the sickling of red blood cells in a mouse model of the disease. Results of the study appear in The Journal of Clinical Investigation.

The scientists did this by manipulating a small molecule known as sphingosine-1-phosphate (S1P), which they report is found in elevated levels in people with sickle cell disease.

"Our research could lead to therapeutic opportunities," said Yang Xia, M.D., Ph.D., the study's senior author and a professor in the Department of Biochemistry and Molecular Biology at the UTHealth Medical School. "We validated our findings in isolated blood cells from patients with sickle cell disease."

The sickling of red blood cells is the hallmark of this disease. Normally shaped like a donut, the diseased cells instead have a crescent-like appearance. This can lead to anemia, chest pain, lung problems and stroke.

Xia's lab screened approximately 7,000 metabolites for functional differences between sickle cell disease mice and controls. They found that sickle cell disease significantly increases S1P and that S1P is generated by sphingosine kinase 1 (SphK1).

They are directly proportional, meaning the more SphK1, the more S1P, and vice versa, Xia said.

When SphK1 was inhibited in a mouse model of sickle cell disease, red blood cells lived longer and had less sickling. When the scientists treated blood samples taken from sickle cell disease patients with SphK1 inhibitors, the investigators found a significant reduction in the number of sickle cells.

Extending the cells' life span is particularly important because diseased cells only last from 10 to 20 days compared to about 120 days for healthy cells in humans. Reducing the sickling is also significant because sickled cells are more prone to being damaged when passing through narrow capillaries. This can cause anemia and other dangerous complications.

"This work could lead to novel treatments for sickle cell disease," said Harinder Juneja, M.D., study co-author and director of hematology at the UTHealth Medical School and Memorial Hermann-Texas Medical Center.

"The study has identified a lipid bioactive molecule involved in sickling and disease progression. The study provides a better understanding of the pathogenesis of the disease and reveals a new therapeutic target," Juneja said.

Rod Kellems, Ph.D., study co-author and chairman of the Department of Biochemistry and Molecular Biology at the UTHealth Medical School, added, "This research provides insight into how red blood cells work, revealing that SphK1-mediated elevation of S1P contributes to sickling and promotes disease progression and highlights potential therapeutic opportunities for sickle cell disease."


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. The original article was written by Rob Cahill. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yujin Zhang, Vladimir Berka, Anren Song, Kaiqi Sun, Wei Wang, Weiru Zhang, Chen Ning, Chonghua Li, Qibo Zhang, Mikhail Bogdanov, Danny C. Alexander, Michael V. Milburn, Mostafa H. Ahmed, Han Lin, Modupe Idowu, Jun Zhang, Gregory J. Kato, Osheiza Y. Abdulmalik, Wenzheng Zhang, William Dowhan, Rodney E. Kellems, Pumin Zhang, Jianping Jin, Martin Safo, Ah-Lim Tsai, Harinder S. Juneja, Yang Xia. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. Journal of Clinical Investigation, 2014; DOI: 10.1172/JCI74604

Cite This Page:

University of Texas Health Science Center at Houston. "Biochemists Reduce Sickling, Progression of Sickle Cell Disease in Mice." ScienceDaily. ScienceDaily, 16 May 2014. <www.sciencedaily.com/releases/2014/05/140516202652.htm>.
University of Texas Health Science Center at Houston. (2014, May 16). Biochemists Reduce Sickling, Progression of Sickle Cell Disease in Mice. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2014/05/140516202652.htm
University of Texas Health Science Center at Houston. "Biochemists Reduce Sickling, Progression of Sickle Cell Disease in Mice." ScienceDaily. www.sciencedaily.com/releases/2014/05/140516202652.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins