Featured Research

from universities, journals, and other organizations

With imprecise chips to the artificial brain

Date:
May 16, 2014
Source:
Universitaet Bielefeld
Summary:
Which circuits and chips are suitable for building artificial brains using the least possible amount of power? A surprising finding: Constructions that use not only digital but also analog compact and imprecise circuits are more suitable for building artificial nervous systems, rather than arrangements with only digital or precise but power-demanding analog electronic circuits.

Which circuits and chips are suitable for building artificial brains using the least possible amount of power? This is the question that Junior Professor Dr. Elisabetta Chicca from the Center of Excellence Cognitive Interaction Technology (CITEC) has been investigating in collaboration with colleagues from Italy and Switzerland. A surprising finding: Constructions that use not only digital but also analog compact and imprecise circuits are more suitable for building artificial nervous systems, rather than arrangements with only digital or precise but power-demanding analog electronic circuits. The study will be published in the scientific journal Proceedings of the IEEE. A preview was published online on Thursday, 1 March 2014.

Related Articles


Elisabetta Elisabetta Chicca is the head of the research group 'Neuromorphic Behaving Systems'. One of the aims of her work is to make robots and other technical systems as autonomous and capable of learning as possible. The artificial brains that she and her team are developing are modelled on the biological nervous systems of humans and animals. 'Environmental stimuli are processed in the biological nervous systems of humans and animals in a totally different way to modern computers', says Chicca. 'Biological nervous systems organise themselves; they adapt and learn. In doing so, they require a relatively small amount of energy in comparison with computers and allow for complex skills such as decision-making, the recognition of associations and of patterns.'

The neuroinformatics researcher is trying to utilise biological principles to build artificial nervous systems. Dr. Chicca and her colleagues have been investigating which type of circuits can simulate synapses electronically. Synapses serve as the 'bridges' that transmit signals between nerve cells. Stimuli are communicated through them and they can also save information. Furthermore, the research team have analysed which type of circuit can imitate the so-called plasticity of the biological nerves. Plasticity describes the ability of nerve cells, synapses and cerebral areas to adapt their characteristics according to use. In the brains of athletes, for example, certain cerebral areas are more strongly connected than in non-athletes.

The four researchers also offer solutions for the control of artificial nervous systems. They present software on the basis of which programmes can be written that can control the circuits and chips of an 'electronic brain'.

For her study, Elisabetta Chicca collaborated with her colleagues Chiara Bartolozzi PhD (Istituto Italiano di Tecnologia/ Italian Institute of Technology -- IIT), Professor Dr. Giacomo Indiveri and Fabio Stefanini PhD (both at the Institute of Neuroinformatics, INI, in Zurich and the ETH Zurich).


Story Source:

The above story is based on materials provided by Universitaet Bielefeld. Note: Materials may be edited for content and length.


Journal Reference:

  1. Elisabetta Chicca, Fabio Stefanini, Chiara Bartolozzi, Giacomo Indiveri. Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems. Proceedings of the IEEE, 2014; 1 DOI: 10.1109/JPROC.2014.2313954

Cite This Page:

Universitaet Bielefeld. "With imprecise chips to the artificial brain." ScienceDaily. ScienceDaily, 16 May 2014. <www.sciencedaily.com/releases/2014/05/140516202957.htm>.
Universitaet Bielefeld. (2014, May 16). With imprecise chips to the artificial brain. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/05/140516202957.htm
Universitaet Bielefeld. "With imprecise chips to the artificial brain." ScienceDaily. www.sciencedaily.com/releases/2014/05/140516202957.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins