Featured Research

from universities, journals, and other organizations

Molecules do the triple twist

Date:
May 27, 2014
Source:
Christian-Albrechts-Universitaet zu Kiel
Summary:
They are three-dimensional and yet single-sided: Moebius strips. These twisted objects have only one side and one edge and they put our imagination to the test. Scientists have now succeeded in designing the world’s first triply twisted molecule. Because of their peculiar quantum mechanical properties these structures are interesting for applications in molecular electronics and optoelectronics.

Graphical image of the Moebius molecule.
Credit: Image/Copyright: Rainer Herges/Nature Chemistry

They are three-dimensional and yet single-sided: Moebius strips. These twisted objects have only one side and one edge and they put our imagination to the test. Under the leadership of Kiel University's chemist Professor Rainer Herges, an international team of scientists has succeeded in designing the world's first triply twisted molecule. Because of their peculiar quantum mechanical properties these structures are interesting for applications in molecular electronics and optoelectronics. In a new study in Nature Chemistry, he scientists report that they used a topological trick when making these intricate molecules.

In 1858, the mathematicians Johann Benedict Listing and August Ferdinand Moebius independently discovered the twisted bands with only one side and edge. Ever since, Moebius strips inspired architects, artists and natural scientists alike. Anyone can make a simple model. Just twist a strip of paper by 180 degrees and join both ends to form a band. The topological properties are mind blowing. For example, if cut lengthwise, the band does not give, -- as with an ordinary strip -- two strips but instead one band, with twice the diameter and twisted fourfold.

In the 1960s, chemists also became interested in this peculiar topology because theoretical calculations had predicted properties, which would violate one of the most important laws of chemistry concerning the stability of molecules. But it took almost 50 years to create a simple twisted molecule and to confirm these predictions. And here, too, it was Rainer Herges and his PhD student Dariush Ajami of Kiel University who succeeded in this project. The difficulty was to twist the molecules: like strips made from cardboard or steel, they would resist twisting and start to "untwist" when released at the "ends." Therefore, the scientists constructed their molecule from two parts: One part was an ordinary, strip-like component, the other was pre-shaped and in the form of a belt. Merging these two components unevitably creates a twisted ring

Triply twisted rings, however, are far too strained to be made like this. In this quandary hope comes from topology. It's an everyday life observation that, to relieve tension, twisted bands wind around themselves -- best seen in twisted telephone cords or garden hoses. "The building blocks to construct our triply twisted Moebius molecule are three helical components. They look like short sections of a DNA helix," explains Rainer Herges.

Unlike twisted components, helical molecules are stable. Still, it was not easy to combine these spiral units to a Moebius molecule, because they are chiral. This means that the mirror image cannot be superimposed on the original and that they rotate in a different direction. The researchers had to find the right way of combining the three components in order to design the desired molecule. In the end, they succeeded.

"With our strategy, it is in fact simpler to fabricate triply twisted or other multiply twisted molecular systems than singly twisted units," Herges sums up. The Moebius molecules from Kiel have very interesting electronic and optical properties. They could eventually be used as components to build quantum computers. The "quantum bits" would be defined by the topological states "twisted" and "untwisted" instead of a voltage on and off. Due to their peculiar quantum mechanical properties, currents induced by a magnetic field in Moebius molecules flow in the direction opposite to that they would take in normal rings.


Story Source:

The above story is based on materials provided by Christian-Albrechts-Universitaet zu Kiel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gaston R. Schaller, Filip Topić, Kari Rissanen, Yoshio Okamoto, Jun Shen, Rainer Herges. Design and synthesis of the first triply twisted Möbius annulene. Nature Chemistry, 2014; DOI: 10.1038/nchem.1955

Cite This Page:

Christian-Albrechts-Universitaet zu Kiel. "Molecules do the triple twist." ScienceDaily. ScienceDaily, 27 May 2014. <www.sciencedaily.com/releases/2014/05/140527085451.htm>.
Christian-Albrechts-Universitaet zu Kiel. (2014, May 27). Molecules do the triple twist. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2014/05/140527085451.htm
Christian-Albrechts-Universitaet zu Kiel. "Molecules do the triple twist." ScienceDaily. www.sciencedaily.com/releases/2014/05/140527085451.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Molecules Do the Triple Twist

May 26, 2014 — Scientists have managed to make a triple-Möbius annulene, the most twisted fully conjugated molecule to date. An everyday analogue of a single twisted Möbius molecule is a Möbius strip. It can be ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins