Featured Research

from universities, journals, and other organizations

Two new possible drug targets for triple negative breast cancer

Date:
May 27, 2014
Source:
Houston Methodist
Summary:
The suppression of two genes reduce breast cancer tumor formation and metastasis by interfering with blood vessel formation and recruitment, report scientists. The findings may help medical researchers identify effective drug targets for triple negative breast cancer, or TNBC. About 42,000 new cases of triple negative breast cancer (TNBC) are diagnosed in the United States each year, about 20 percent of all breast cancer diagnoses.

The suppression of two genes reduce breast cancer tumor formation and metastasis by interfering with blood vessel formation and recruitment, report scientists from Houston Methodist and five other institutions in the Proceedings of the National Academy of Sciences (now online). The findings may help medical researchers identify effective drug targets for triple negative breast cancer, or TNBC.

Related Articles


The genes, MLF2 (myeloid leukemia factor 2) and RPL39 (a ribosomal protein), were found to most profoundly impact the production of nitric oxide synthase, which helps regulate blood vessel behavior and could be crucial to the recruitment of new blood vessels to growing tumors. These genes impact the spread of TNBC throughout the body, and have not so far been linked with breast cancer.

"We have found two unique genes that may affect the most lethal type of breast cancer" said principal investigator and Houston Methodist Cancer Center Director Jenny Chang, M.D., "Most importantly, by knowing how these genes function, we have drugs that can block nitric oxide signaling and will begin a clinical trial in the Cancer Center in the near future"

About 42,000 new cases of triple negative breast cancer (TNBC) are diagnosed in the United States each year, about 20 percent of all breast cancer diagnoses. Patients typically relapse within one to three years of being treated. TNBC is distinguished from other breast cancers in that it does not express the genes for estrogen receptor, progesterone receptor, and Her2/neu and is frequently harder to treat.

By suppressing close to five hundred TNBC-related genes, Chang's group found interference was strongest with MLF2 and RPL39 in triple negative breast cancer model tissue. The scientists also learned that mutations in these genes in human patients were associated with worse survival in (human) triple negative breast cancer patients.

The researchers went a step further, determining which configurations of small inhibitory RNA (siRNA) were most efficient at shutting down MLF2 and RPL39 in breast cancer stem cell lines. siRNA molecules interfere with the cell's ability to express genes and have proven to be effective drug tools for a wide variety of diseases, including some cancers.

In preliminary studies, the combination of siRNA and chemotherapy agent docetaxel significantly reduced tumor volume relative to chemotherapy alone and also appeared to prolong survival. Separate analyses showed suppression with siRNA appeared to yield fewer metastases to lung tissue.

Earlier this year, Chang, Weill Cornell Medical College Dean Laurie Glimcher, M.D., and colleagues reported to Nature another possible drug target for TNBC patients called XBP1, another gene previously unassociated with breast cancer.

"Together with our colleagues in Weill Cornell, we are launching clinical trials that affect these unique novel pathways that may cause TNBC to spread. These trials have potential to significantly impact this highly aggressive form of breast cancer."


Story Source:

The above story is based on materials provided by Houston Methodist. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Dave, S. Granados-Principal, R. Zhu, S. Benz, S. Rabizadeh, P. Soon-Shiong, K.-D. Yu, Z. Shao, X. Li, M. Gilcrease, Z. Lai, Y. Chen, T. H.- M. Huang, H. Shen, X. Liu, M. Ferrari, M. Zhan, S. T. C. Wong, M. Kumaraswami, V. Mittal, X. Chen, S. S. Gross, J. C. Chang. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1320769111

Cite This Page:

Houston Methodist. "Two new possible drug targets for triple negative breast cancer." ScienceDaily. ScienceDaily, 27 May 2014. <www.sciencedaily.com/releases/2014/05/140527114304.htm>.
Houston Methodist. (2014, May 27). Two new possible drug targets for triple negative breast cancer. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2014/05/140527114304.htm
Houston Methodist. "Two new possible drug targets for triple negative breast cancer." ScienceDaily. www.sciencedaily.com/releases/2014/05/140527114304.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins