Featured Research

from universities, journals, and other organizations

Exciton detected in metal for first time: Microscopic quantum mechanical description of how light excites electrons in metals

Date:
June 1, 2014
Source:
University of Pittsburgh
Summary:
Scientists have detected a fundamental particle of light-matter interaction in metals, the exciton for the first time. Humankind has used reflection of light from a metal mirror on a daily basis for millennia, but the quantum mechanical magic behind this familiar phenomenon is only now being uncovered.

Light (abstract stock image).
Credit: Dmytro Tolokonov / Fotolia

University of Pittsburgh researchers have become the first to detect a fundamental particle of light-matter interaction in metals, the exciton. The team will publish its work online June 1 in Nature Physics.

Related Articles


Humankind has used reflection of light from a metal mirror on a daily basis for millennia, but the quantum mechanical magic behind this familiar phenomenon is only now being uncovered.

Physicists describe physical phenomena in terms of interactions between fields and particles, says lead author Hrvoje Petek, Pitt's Richard King Mellon Professor in the Department of Physics and Astronomy within Kenneth P. Dietrich School of Arts and Sciences. When light (an electromagnetic field) reflects from a metal mirror, it shakes the metal's free electrons (the particles), and the consequent acceleration of electrons creates a nearly perfect replica of the incident light (the reflection).

The classical theory of electromagnetism provides a good understanding of inputs and outputs of this process, but a microscopic quantum mechanical description of how the light excites the electrons is lacking.

Petek's team of experimental and theoretical physicists and chemists from the University of Pittsburgh and Institute of Physics in Zagreb, Croatia, report on how light and matter interact at the surface of a silver crystal. They observe, for the first time, an exciton in a metal.

Excitons, particles of light-matter interaction where light photons become transiently entangled with electrons in molecules and semiconductors, are known to be fundamentally important in processes such as plant photosynthesis and optical communications that are the basis for the Internet and cable TV. The optical and electronic properties of metals cause excitons to last no longer than approximately 100 attoseconds (0.1 quadrillionth of a second). Such short lifetimes make it difficult for scientists to study excitons in metals, but it also enables reflected light to be a nearly perfect replica of the incoming light.

Yet, Branko Gumhalter at the Institute of Physics predicted, and Petek and his team experimentally discovered, that the surface electrons of silver crystals can maintain the excitonic state more than 100 times longer than the bulk metal, enabling the excitons in metals to be experimentally captured by a newly developed multidimensional coherent spectroscopic technique.

The ability to detect excitons in metals sheds light on how light is converted to electrical and chemical energy in plants and solar cells, and in the future it may enable metals to function as active elements in optical communications. In other words, it may be possible to control how light is reflected from a metal.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xuefeng Cui, Cong Wang, Adam Argondizzo, Sean Garrett-Roe, Branko Gumhalter, Hrvoje Petek. Transient excitons at metal surfaces. Nature Physics, 2014; DOI: 10.1038/nphys2981

Cite This Page:

University of Pittsburgh. "Exciton detected in metal for first time: Microscopic quantum mechanical description of how light excites electrons in metals." ScienceDaily. ScienceDaily, 1 June 2014. <www.sciencedaily.com/releases/2014/06/140601150926.htm>.
University of Pittsburgh. (2014, June 1). Exciton detected in metal for first time: Microscopic quantum mechanical description of how light excites electrons in metals. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2014/06/140601150926.htm
University of Pittsburgh. "Exciton detected in metal for first time: Microscopic quantum mechanical description of how light excites electrons in metals." ScienceDaily. www.sciencedaily.com/releases/2014/06/140601150926.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins