Featured Research

from universities, journals, and other organizations

Understanding active pharmaceutical ingredients

Date:
June 5, 2014
Source:
International Union of Crystallography
Summary:
Active pharmaceutical ingredient is the term used to refer to the biologically active component of a drug product (e.g. tablet, capsule). Scientists unravel some of the complexities of these ingredients in a new report.

Active pharmaceutical ingredient (API), is the term used to refer to the biologically active component of a drug product (e.g. tablet, capsule). Drug products are usually composed of several components. The aforementioned API is the primary ingredient. Other ingredients are commonly known as "excipients" and these substances are always required to be biologically safe, often making up a variable fraction of the drug product. The procedure for optimizing and compositing this mixture of components used in the drug is known as "formulation."

For example, if the API is a solid and the drug is required to have a liquid dosage form, such as a cough syrup, then the excipients would be the liquids that are used to formulate the syrup. The design criteria for any small molecule API is usually a combination of several factors that goes beyond the intended therapeutic effect, and usually heavily encompasses both pharmacokinetic and pharmacodynamic considerations, so for this reason, API molecules have many chemical functional groups.

The API form that is used in a formulation is often the most thermodynamically stable crystalline form. As such, the phenomenon of hydrogen bonding in combination with there being many functional groups on the API usually results in the available crystalline form being a hydrate.

Because of this fact the hydration behavior of crystalline APIs is of particularly high importance within the pharmaceutical industry, and is vastly studied from every possible angle. The state of hydration has a direct effect on the physical properties of the API, which in turn has a large impact on the drug processability and how the drug will eventually perform in-vivo, i.e. stability, solubility, and bioavailability.

Recently, a team of scientists in the department of Drug Product Science and Technology, at Bristol-Myers Squibb, USA have developed a supplementary technique to complement more conventional analysis (methods such as calorimetric studies, nuclear magnetic resonance and vibrational spectroscopy) to study the behavior of hydration in organic crystalline solids.

By performing single crystal X-ray diffraction experiments with the ultimate objective being interpretation of the non-Bragg diffraction features, Chan and colleagues were able to gain further insight into the mechanical and structural details of the dehydration of the crystal. These scattering features were reproduced and studied using computer models and the results were able to show the mechanistic relationships between changes in the lattice structure as stages of the overall drying process.

This study is the first of its kind to combine the mechanism of dehydration and non-Bragg scattering features from a single API crystal and the results will further improve the knowledge, formulation and choice of API used in drug manufacture today. The group at BMS anticipates that these same data interpretation techniques will be useful to other researchers and that a more user friendly modeling software can be made available in the future.


Story Source:

The above story is based on materials provided by International Union of Crystallography. The original article was written by Jonathan Agbenyega. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. J. Chan, Q. Gao, M. Dabros. Understanding the structure details when drying hydrate crystals of pharmaceuticals – interpretations from diffuse scattering and inter-modulation satellites of a partially dehydrated crystal. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014; 70 (3): 555 DOI: 10.1107/S2052520614005125

Cite This Page:

International Union of Crystallography. "Understanding active pharmaceutical ingredients." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605093305.htm>.
International Union of Crystallography. (2014, June 5). Understanding active pharmaceutical ingredients. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/06/140605093305.htm
International Union of Crystallography. "Understanding active pharmaceutical ingredients." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605093305.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins