Featured Research

from universities, journals, and other organizations

No limits to human effects on clouds

Date:
June 9, 2014
Source:
Weizmann Institute of Science
Summary:
Atmospheric particles affect cloud formation in real time, researchers suggest. Clouds need tiny particles called aerosols that rise in the atmosphere, in order to form. These aerosols -- natural ones like sea salt or dust, or such human-made ones as soot -- form nuclei around which the cloud droplets condense. In relatively clean environments, clouds can only grow as large as the amount of aerosols in the atmosphere allows: These will be the limiting factor in cloud formation.

Convective clouds forming over the Amazon in a blanket smoke.
Credit: Prof. Ilan Koren

Understanding how clouds affect the climate has been a difficult proposition. What controls the makeup of the low clouds that cool the atmosphere or the high ones that trap heat underneath? How does human activity change patterns of cloud formation? The research of the Weizmann Institute's Prof. Ilan Koren suggests we may be nudging cloud formation in the direction of added area and height. He and his team have analyzed a unique type of cloud formation; their findings, which appeared recently in Science indicate that in pre-industrial times, there was less cloud cover over areas of pristine ocean than is found there today.

Related Articles


Clouds need tiny particles called aerosols that rise in the atmosphere, in order to form. These aerosols -- natural ones like sea salt or dust, or such human-made ones as soot -- form nuclei around which the cloud droplets condense. In relatively clean environments, clouds can only grow as large as the amount of aerosols in the atmosphere allows: They will be the limiting factor in cloud formation.

The question is: Does the current load of aerosols in the atmosphere already exceed that limit, in which case adding extra particles should not greatly affect cloud formation; or do they continue to be a limiting factor as pollution rises, so that added aerosols would continue to influence the clouds? A model developed by Koren and his team showed that an increase in aerosols, even in relatively polluted conditions, should result in taller, larger clouds that rain more aggressively. But proving the model was another story: Experimenting on clouds, or even finding ways to isolate the various factors that go into their formation in real time, is a highly difficult undertaking.

Koren, research student Guy Dagan and Dr. Orit Altaratz in Earth and Planetary Sciences Department looked to an unlikely place to test their model: near the horse latitudes. These are subtropical regions far out in the oceans that were reviled in the past by sailors because the winds that carried their sails would die out there for weeks on end. Here was a lab for them to test the basic physics of their model: an atmospheric region controlled by well-defined meteorological conditions, which was sometimes pristine, sometimes containing low levels of aerosols. If the model was correct, transitions from one to the other should be dramatic. And they wanted to test their theory on the clouds that do form in this region -- warm convective clouds that are fuelled by the ocean's moisture.

With other potential factors -- wind, large temperature swings or land formations -- out of the way, the team could concentrate on the aerosols, comparing daily satellite images of cloud cover and measurements of the aerosol load to the predictions of the model. Using many different types of analysis, they found that their model closely matched the satellite observations.

They then looked at another source of data: that of the Clouds' and Earth's Radiant Energy System (CERES) satellite instruments which measure fluxes of reflected and emitted radiation from Earth to space, to help scientists understand how the climate varies over time. When analyzed together with the aerosol loading over the same area at the same time, the outcome, says Koren, was a "textbook demonstration of the invigoration effect" of added aerosols on clouds. In other words, the radiation data fit the unique signature of clouds that were growing higher and larger. Such clouds show a strong increase in cooling due to the reflected short waves, but that effect is partly cancelled out by the enhanced, trapped, long-wave radiation coming from underneath.

At least over the oceans, the pre-industrial cloud conditions would have been considerably different from those of today; this implies that the aerosols we have been adding to the atmosphere may have had a significant effect on global patterns of cloud formation and rain.

Koren: "We showed that convective clouds do not necessarily stop being aerosol-limited; under relatively polluted conditions the increase in aerosol loading will make the clouds taller, larger and their rain-rate stronger. As the area of this cloud cover grows, it reflects more of the shortwave radiation; but as the clouds get taller, their greenhouse effect becomes more significant, counteracting about half of their total cooling effect."


Story Source:

The above story is based on materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Koren, G. Dagan, O. Altaratz. From aerosol-limited to invigoration of warm convective clouds. Science, 2014; 344 (6188): 1143 DOI: 10.1126/science.1252595

Cite This Page:

Weizmann Institute of Science. "No limits to human effects on clouds." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609093958.htm>.
Weizmann Institute of Science. (2014, June 9). No limits to human effects on clouds. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2014/06/140609093958.htm
Weizmann Institute of Science. "No limits to human effects on clouds." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609093958.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com
Uphill Battle to Tackle Indonesian Shark Fishing

Uphill Battle to Tackle Indonesian Shark Fishing

AFP (Dec. 17, 2014) Sharks are hauled ashore every day at a busy market on the central Indonesian island of Lombok, the hub of a booming trade that provides a livelihood for local fishermen but is increasingly alarming environmentalists. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com
2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

Newsy (Dec. 16, 2014) Researchers found the bacteria Klebsiella pneumoniae Carbapenemase in the water where the 2016 Olympics is supposed to take place. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins