Featured Research

from universities, journals, and other organizations

Geologists confirm oxygen levels of ancient oceans

Date:
June 10, 2014
Source:
Syracuse University
Summary:
Geologists have discovered a new way to study oxygen levels in the Earth's oldest oceans. New research approach may have important implications for the study of marine ecology and global warming.

Earth's landscape, as it may have looked more than 2.5 billion years ago.
Credit: From a painting by Peter Sawyer, The Smithsonian Institute; Courtesy of Syracuse University

Geologists in the College of Arts and Sciences have discovered a new way to study oxygen levels in Earth's oldest oceans.

Zunli Lu and Xiaoli Zhou, an assistant professor and Ph.D. student, respectively, in the Department of Earth Sciences, are part of an international team of researchers whose findings have been published by the journal Geology (Geological Society of America, 2014). Their research approach may have important implications for the study of marine ecology and global warming.

"More than 2.5 billion years ago, there was little to no oxygen in the oceans, as methane shrouded the Earth in a haze," says Lu, a member of Syracuse University's Low-Temperature Geochemistry Research Group. "Organisms practicing photosynthesis eventually started to overpower reducing chemical compounds [i.e., electron donors], and oxygen began building up in the atmosphere. This period has been called the Great Oxidation Event."

Using a novel approach called iodine geochemistry, Lu, Zhou and their colleagues have confirmed the earliest appearance of dissolved oxygen in the ocean's surface waters.

Central to their approach is iodate, a form of iodine that exists only in oxygenated waters. When iodate is detected in carbonate rocks in a marine setting, Lu and company are able to measure the elemental ratio of iodine to calcium. This measurement, known as a proxy for ocean chemistry, helps them figure out how much oxygen has dissolved in the water.

"Iodine geochemistry enables us to constrain oxygen levels in oceans that have produced calcium carbonate minerals and fossils," says Lu, who developed the proxy. "What we've found in ancient rock reinforces the proxy's reliability. Already, we're using the proxy to better understand the consequences of ocean deoxygenation, due to rapid global warming."

In addition to Lu and Zhou, the article was co-authored by Dalton S. Hardistry, a graduate student at the University of California, Riverside; Noah J. Planavsky, assistant professor of geology and geophysics at Yale University; Andrey Bekker, assistant professor of geological sciences at the University of Manitoba (Canada); Pascal Philippot, professor of physics at the University of Denis Diderot in Paris (France); and Timothy W. Lyons, professor of biogeochemistry at UC Riverside.


Story Source:

The above story is based on materials provided by Syracuse University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. S. Hardisty, Z. Lu, N. J. Planavsky, A. Bekker, P. Philippot, X. Zhou, T. W. Lyons. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 2014; DOI: 10.1130/G35439.1

Cite This Page:

Syracuse University. "Geologists confirm oxygen levels of ancient oceans." ScienceDaily. ScienceDaily, 10 June 2014. <www.sciencedaily.com/releases/2014/06/140610144656.htm>.
Syracuse University. (2014, June 10). Geologists confirm oxygen levels of ancient oceans. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/06/140610144656.htm
Syracuse University. "Geologists confirm oxygen levels of ancient oceans." ScienceDaily. www.sciencedaily.com/releases/2014/06/140610144656.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins