Featured Research

from universities, journals, and other organizations

3-D computer model may help refine target for deep brain stimulation therapy for dystonia

Date:
June 25, 2014
Source:
Cedars-Sinai Medical Center
Summary:
Using a complex set of data from records and imaging scans of patients who have undergone successful DBS implantation, researchers have created 3-D, computerized models that map the brain region involved in dystonia. The models identify an anatomical target for further study and provide information for neurologists and neurosurgeons to consider when planning surgery and making device programming decisions.

Although deep brain stimulation can be an effective therapy for dystonia -- a potentially crippling movement disorder -- the treatment isn't always effective, or benefits may not be immediate. Precise placement of DBS electrodes is one of several factors that can affect results, but few studies have attempted to identify the "sweet spot," where electrode placement yields the best results.

Researchers led by investigators at Cedars-Sinai, using a complex set of data from records and imaging scans of patients who have undergone successful DBS implantation, have created 3-D, computerized models that map the brain region involved in dystonia. The models identify an anatomical target for further study and provide information for neurologists and neurosurgeons to consider when planning surgery and making device programming decisions.

"We know DBS works as a treatment for dystonia, but we don't know exactly how it works or why some patients have better, quicker results than others. Patient age, disease duration and other underlying factors have a role, and we believe electrode positioning and device programming are critical, but there is no consensus on ideal device placement and optimal programming strategies," said Michele Tagliati, MD, director of the Movement Disorders Program in the Department of Neurology at Cedars-Sinai.

"This modeling paves the way for the construction of practical therapeutic and investigational targets," added Tagliati, senior author of an article now available on the online edition of Annals of Neurology.

Medications usually are the first line of treatment for dystonia and several other movement disorders, but if drugs fail -- as frequently happens -- or side effects are excessive, neurologists and neurosurgeons may supplement them with deep brain stimulation. Electrical leads are implanted deep in the brain, and a pulse generator is placed near the collarbone. The device is later programmed with a remote, hand-held controller.

To calm the disorganized muscle contractions of dystonia, doctors generally target a brain structure called the globus pallidus, but studies on precise positioning of electrode contacts and the best programming parameters -- such as the intensity and frequency of electrical stimulation -- are rare and conflicting. Finding the most effective settings can take months of fine-tuning.

In this retrospective study, investigators examined a database of 94 patients with the most common genetic form of dystonia, DYT1, who had been treated with DBS for at least a year. They selected 21 patients who had good responses to treatment, compiled their demographic and treatment information, and used magnetic resonance imaging scans to create 3-D anatomical models with a fine grid to show exact location of relevant brain structures.

The investigators then simulated the placement of electrodes as they were positioned in the patients' brains and input the actual stimulation parameters into a computer program -- a "volume of tissue activation" model -- which calculated detailed information specific to each patient and each electrode. The model draws on principles of neurophysiology -- the way nerve cells respond to DBS -- the biophysics of voltage distribution from electrodes, and the anatomy of the globus pallidus and surrounding structures.

"We found that clinicians were applying relatively large amounts of energy to wide swaths of the globus pallidus, but the area in common among most individuals was much smaller. We interpret this as being the potential 'target within the target,' and if our results are validated in further research and clinical practice, computer modeling may offer a physiologically-based, data-driven, visualized approach to clinical decision-making," Tagliati said.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tyler Cheung, Angela M. Noecker, Ron L. Alterman, Cameron C. McIntyre, Michele Tagliati. Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Annals of Neurology, 2014; DOI: 10.1002/ana.24187

Cite This Page:

Cedars-Sinai Medical Center. "3-D computer model may help refine target for deep brain stimulation therapy for dystonia." ScienceDaily. ScienceDaily, 25 June 2014. <www.sciencedaily.com/releases/2014/06/140625101137.htm>.
Cedars-Sinai Medical Center. (2014, June 25). 3-D computer model may help refine target for deep brain stimulation therapy for dystonia. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2014/06/140625101137.htm
Cedars-Sinai Medical Center. "3-D computer model may help refine target for deep brain stimulation therapy for dystonia." ScienceDaily. www.sciencedaily.com/releases/2014/06/140625101137.htm (accessed August 20, 2014).

Share This




More Computers & Math News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Ballmer Leaves Microsoft's Board, Has Advice For Nadella

Newsy (Aug. 19, 2014) In a letter to Microsoft CEO Satya Nadella, Ballmer said he's leaving the board of directors and offered tips on how the company can be successful. Video provided by Newsy
Powered by NewsLook.com
What Google Can Gain From Special Accounts For Children

What Google Can Gain From Special Accounts For Children

Newsy (Aug. 19, 2014) Google will reportedly offer official accounts for children younger than 13 years old. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: Ebola's Economic Impact Could Eclipse SARS

Breakingviews: Ebola's Economic Impact Could Eclipse SARS

Reuters - Business Video Online (Aug. 18, 2014) The virus ravaging Africa has yet to spread elsewhere. Yet Asia’s SARS crisis in 2003 showed how changes to behaviour can hurt the economy more than the actual disease, says Breakingviews' Una Galani. Video provided by Reuters
Powered by NewsLook.com
Twitter Users Up In Arms After 'Favorites' Show Up In Feeds

Twitter Users Up In Arms After 'Favorites' Show Up In Feeds

Newsy (Aug. 17, 2014) Twitter is testing a feature on some users that shows favorited tweets from people they follow in their own timeline, the same way a retweet appears. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins