Featured Research

from universities, journals, and other organizations

Physicists' findings improve quality of flexible, conductive, transparent glass

Date:
June 26, 2014
Source:
Binghamton University, State University of New York
Summary:
A new technique will improve the quality of flexible, conductive, transparent glass. Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, experts said, the material took on a brown or yellow tinge that would harm the display's performance. New research addresses the problem.

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass.
Credit: Image courtesy of Binghamton University, State University of New York

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass. (The sort that's needed for Minority Report-style giant computer displays.)

Related Articles


Louis Piper's research focuses on metal oxides, a class of materials that includes some of the best insulators as well as some of the best conductors in use today. He and his colleagues, writing this month in the journal Applied Physics Letters, suggest a new method for manufacturing amorphous indium gallium zinc oxide (a-IGZO), a ceramic that looks like glass and can behave like metal, or even like silicon.

Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, Piper said, the material took on a brown or yellow tinge that would harm the display's performance.

Using X-ray photoelectron spectroscopy to examine the chemical composition and electronic structure of a-IGZO, Piper and his colleagues tested 50 samples, each about a centimeter square and a micron thick. Previous studies have worked with fewer than five samples; this larger effort enabled the physicists to observe trends and conduct data analysis.

The surprising finding of these elaborate experiments? The deep subgap feature, which caused the discoloration in the material, is the result of local variation in oxygen coordination, rather than oxygen vacancies. "There was a lot of detective work," Piper said. "Several models had suggested missing oxygen played an important role, but our data showed otherwise."

Eventually, computations conducted by theorists at the University of Bath backed up the experimental findings from Binghamton: Oxygen that has too few positive metal ions surrounding it seems to be the cause of the subgap.

The team not only identified the reason for the subgap feature; it also developed a way to resolve the problem. Low-temperature annealing -- heating at 390 degrees Fahrenheit (a temperature you might use when baking a pizza) -- allows a-IGZO to retain its conductive properties but removes the subgap states, Piper said.

Bottom line, he said: "You don't have to sacrifice transparency for conductivity."

Creating a more reliable production process for a-IGZO will save electronics manufacturers money. It could also reduce energy use, as a fully transparent display can take advantage of ambient light and does not require as much backlighting.


Story Source:

The above story is based on materials provided by Binghamton University, State University of New York. The original article was written by Rachel Coker. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Sallis, K. T. Butler, N. F. Quackenbush, D. S. Williams, M. Junda, D. A. Fischer, J. C. Woicik, N. J. Podraza, B. E. White, A. Walsh, L. F. J. Piper. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. Applied Physics Letters, 2014; 104 (23): 232108 DOI: 10.1063/1.4883257

Cite This Page:

Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. ScienceDaily, 26 June 2014. <www.sciencedaily.com/releases/2014/06/140626121701.htm>.
Binghamton University, State University of New York. (2014, June 26). Physicists' findings improve quality of flexible, conductive, transparent glass. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2014/06/140626121701.htm
Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. www.sciencedaily.com/releases/2014/06/140626121701.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins