Featured Research

from universities, journals, and other organizations

Physicists' findings improve quality of flexible, conductive, transparent glass

Date:
June 26, 2014
Source:
Binghamton University, State University of New York
Summary:
A new technique will improve the quality of flexible, conductive, transparent glass. Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, experts said, the material took on a brown or yellow tinge that would harm the display's performance. New research addresses the problem.

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass.
Credit: Image courtesy of Binghamton University, State University of New York

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass. (The sort that's needed for Minority Report-style giant computer displays.)

Related Articles


Louis Piper's research focuses on metal oxides, a class of materials that includes some of the best insulators as well as some of the best conductors in use today. He and his colleagues, writing this month in the journal Applied Physics Letters, suggest a new method for manufacturing amorphous indium gallium zinc oxide (a-IGZO), a ceramic that looks like glass and can behave like metal, or even like silicon.

Companies such as Sharp and LG already use a-IGZO in some high-end displays. It's also found in Apple's new iPad Air. But it has been difficult to maintain transparency and conductivity: In some samples, Piper said, the material took on a brown or yellow tinge that would harm the display's performance.

Using X-ray photoelectron spectroscopy to examine the chemical composition and electronic structure of a-IGZO, Piper and his colleagues tested 50 samples, each about a centimeter square and a micron thick. Previous studies have worked with fewer than five samples; this larger effort enabled the physicists to observe trends and conduct data analysis.

The surprising finding of these elaborate experiments? The deep subgap feature, which caused the discoloration in the material, is the result of local variation in oxygen coordination, rather than oxygen vacancies. "There was a lot of detective work," Piper said. "Several models had suggested missing oxygen played an important role, but our data showed otherwise."

Eventually, computations conducted by theorists at the University of Bath backed up the experimental findings from Binghamton: Oxygen that has too few positive metal ions surrounding it seems to be the cause of the subgap.

The team not only identified the reason for the subgap feature; it also developed a way to resolve the problem. Low-temperature annealing -- heating at 390 degrees Fahrenheit (a temperature you might use when baking a pizza) -- allows a-IGZO to retain its conductive properties but removes the subgap states, Piper said.

Bottom line, he said: "You don't have to sacrifice transparency for conductivity."

Creating a more reliable production process for a-IGZO will save electronics manufacturers money. It could also reduce energy use, as a fully transparent display can take advantage of ambient light and does not require as much backlighting.


Story Source:

The above story is based on materials provided by Binghamton University, State University of New York. The original article was written by Rachel Coker. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Sallis, K. T. Butler, N. F. Quackenbush, D. S. Williams, M. Junda, D. A. Fischer, J. C. Woicik, N. J. Podraza, B. E. White, A. Walsh, L. F. J. Piper. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. Applied Physics Letters, 2014; 104 (23): 232108 DOI: 10.1063/1.4883257

Cite This Page:

Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. ScienceDaily, 26 June 2014. <www.sciencedaily.com/releases/2014/06/140626121701.htm>.
Binghamton University, State University of New York. (2014, June 26). Physicists' findings improve quality of flexible, conductive, transparent glass. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/06/140626121701.htm
Binghamton University, State University of New York. "Physicists' findings improve quality of flexible, conductive, transparent glass." ScienceDaily. www.sciencedaily.com/releases/2014/06/140626121701.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins