Featured Research

from universities, journals, and other organizations

Astronomers closer to proving gravitational waves with precise measurements of rapidly rotating neutron star

Date:
June 27, 2014
Source:
University of Warwick
Summary:
When Albert Einstein proposed the existence of gravitational waves as part of his theory of relativity, he set in train a pursuit for knowledge that continues nearly a century later. These ripples in the space-time continuum exert a powerful appeal because it is believed they carry information that will allow us to look back into the very beginnings of the universe. But although the weight of evidence continues to build, undisputed confirmation of their existence still eludes scientists. Researchers have now provided another piece of the puzzle with their precise measurements of a rapidly rotating neutron star: one of the smallest, densest stars in the universe.

Black hole devouring a neutron star. Neutron stars, along with colliding black holes and the Big Bang, may all be sources of gravitational waves.
Credit: Dana Berry/NASA

When Albert Einstein proposed the existence of gravitational waves as part of his theory of relativity, he set in train a pursuit for knowledge that continues nearly a century later.

These ripples in the space-time continuum exert a powerful appeal because it is believed they carry information that will allow us to look back into the very beginnings of the universe. But although the weight of evidence continues to build, undisputed confirmation of their existence still eludes scientists.

Researchers from University of Warwick and Monash University have provided another piece of the puzzle with their precise measurements of a rapidly rotating neutron star: one of the smallest, densest stars in the universe.

Neutron stars, along with colliding black holes and the Big Bang, may all be sources of gravitational waves.

In work published in The Astrophysical Journal, the Monash and Warwick scientists significantly improved the precision with which they could measure the orbit of Scorpius X-1, a double star system containing a neutron star that feeds off a nearby companion star. This interaction makes it the strongest source of X-rays in the sky apart from the sun.

Dr Duncan Galloway from the Monash Centre for Astrophysics said that the main difficulty in searching for gravitational waves emitted by Scorpius X-1 was the lack of precise knowledge about the neutron star's orbit.

"We have made a concerted effort to refine Scorpius X-1's orbit and other parameters, with the goal of significantly boosting the sensitivity of searches for gravitational waves," Dr Galloway said.

"Detecting gravitational waves will open a new window for observation and allow us to study objects in the universe in a way that can't be achieved using traditional astronomy techniques."

Monash PhD student Ms Shakya Premachandra spent three months at the University of Warwick learning specific techniques and methods to improve the team's measurements.

Under the guidance of Dr Danny Steeghs from Warwick's Astronomy and Astrophysics Group, Ms Premachandra worked on the research data and learnt a specific software program developed by Warwick astronomers.

Dr Steeghs said he first started researching gravitational waves with Monash in 2009 and seed funding from the Monash Warwick Alliance has supported these efforts.

"With help from the Monash Warwick Alliance, we quickly identified a genuine opportunity to make substantial research progress by combining our expertise, which also led to an ambitious plan for continued collaboration," Dr Steeghs said.


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Duncan K. Galloway, Sammanani Premachandra, Danny Steeghs, Tom Marsh, Jorge Casares, Rιmon Cornelisse. PRECISION EPHEMERIDES FOR GRAVITATIONAL-WAVE SEARCHES. I. Sco X-1. The Astrophysical Journal, 2014; 781 (1): 14 DOI: 10.1088/0004-637X/781/1/14

Cite This Page:

University of Warwick. "Astronomers closer to proving gravitational waves with precise measurements of rapidly rotating neutron star." ScienceDaily. ScienceDaily, 27 June 2014. <www.sciencedaily.com/releases/2014/06/140627112714.htm>.
University of Warwick. (2014, June 27). Astronomers closer to proving gravitational waves with precise measurements of rapidly rotating neutron star. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/06/140627112714.htm
University of Warwick. "Astronomers closer to proving gravitational waves with precise measurements of rapidly rotating neutron star." ScienceDaily. www.sciencedaily.com/releases/2014/06/140627112714.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins