Featured Research

from universities, journals, and other organizations

Bio-printing transplantable tissues, organs: Another step closer

Date:
June 30, 2014
Source:
University of Sydney
Summary:
Researchers have made a giant leap towards the goal of 'bio-printing' transplantable tissues and organs for people affected by major diseases and trauma injuries, a new study reports. Scientists have bio-printed artificial vascular networks mimicking the body's circulatory system that are necessary for growing large complex tissues.

Surgeon at work in operating room (stock image).
Credit: Gennadiy Poznyakov / Fotolia

Researchers have made a giant leap towards the goal of 'bio-printing' transplantable tissues and organs for people affected by major diseases and trauma injuries, a new study reports.

Related Articles


Scientists from the Universities of Sydney, Harvard, Stanford and MIT have bio-printed artificial vascular networks mimicking the body's circulatory system that are necessary for growing large complex tissues.

"Thousands of people die each year due to a lack of organs for transplantation," says study lead author and University of Sydney researcher, Dr Luiz Bertassoni.

"Many more are subjected to the surgical removal of tissues and organs due to cancer, or they're involved in accidents with large fractures and injuries.

"Imagine being able to walk into a hospital and have a full organ printed -- or bio-printed, as we call it -- with all the cells, proteins and blood vessels in the right place, simply by pushing the 'print' button in your computer screen.

"We are still far away from that, but our research is addressing exactly that. Our finding is an important new step towards achieving these goals.

"At the moment, we are pretty much printing 'prototypes' that, as we improve, will eventually be used to change the way we treat patients worldwide."

The research challenge -- networking cells with a blood supply.

Cells need ready access to nutrients, oxygen and an effective 'waste disposal' system to sustain life. This is why 'vascularization' -- a functional transportation system -- is central to the engineering of biological tissues and organs.

"One of the greatest challenges to the engineering of large tissues and organs is growing a network of blood vessels and capillaries," says Dr Bertassoni.

"Cells die without an adequate blood supply because blood supplies oxygen that's necessary for cells to grow and perform a range of functions in the body."

"To illustrate the scale and complexity of the bio-engineering challenge we face, consider that every cell in the body is just a hair's width from a supply of oxygenated blood.

"Replicating the complexity of these networks has been a stumbling block preventing tissue engineering from becoming a real world clinical application."

But this is what researchers have now achieved.

What the researchers achieved

Using a high-tech 'bio-printer', the researchers fabricated a multitude of interconnected tiny fibres to serve as the mold for the artificial blood vessels.

They then covered the 3D printed structure with a cell-rich protein-based material, which was solidified by applying light to it.

Lastly they removed the bio-printed fibres to leave behind a network of tiny channels coated with human endothelial cells, which self organized to form stable blood capillaries in less than a week.

The study reveals that the bioprinted vascular networks promoted significantly better cell survival, differentiation and proliferation compared to cells that received no nutrient supply.

Significance of the breakthrough

According to Dr Bertassoni, a major benefit of the new bio-printing technique is the ability to fabricate large three-dimensional micro-vascular channels capable of supporting life on the fly, with enough precision to match individual patients' needs.

"While recreating little parts of tissues in the lab is something that we have already been able to do, the possibility of printing three-dimensional tissues with functional blood capillaries in the blink of an eye is a game changer," he says.

"Of course, simplified regenerative materials have long been available, but true regeneration of complex and functional organs is what doctors really want and patients really need, and this is the objective of our work.


Story Source:

The above story is based on materials provided by University of Sydney. Note: Materials may be edited for content and length.


Journal Reference:

  1. Luiz E. Bertassoni, Martina Cecconi, Vijayan Manoharan, Mehdi Nikkhah, Jesper Hjortnaes, Ana Luiza Cristino, Giada Barabaschi, Danilo Demarchi, Mehmet R. Dokmeci, Yunzhi Yang, Ali Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014; 14 (13): 2202 DOI: 10.1039/C4LC00030G

Cite This Page:

University of Sydney. "Bio-printing transplantable tissues, organs: Another step closer." ScienceDaily. ScienceDaily, 30 June 2014. <www.sciencedaily.com/releases/2014/06/140630103136.htm>.
University of Sydney. (2014, June 30). Bio-printing transplantable tissues, organs: Another step closer. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/06/140630103136.htm
University of Sydney. "Bio-printing transplantable tissues, organs: Another step closer." ScienceDaily. www.sciencedaily.com/releases/2014/06/140630103136.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins