Featured Research

from universities, journals, and other organizations

A first: Scientists show bacteria can evolve biological timer to survive antibiotics

Date:
June 30, 2014
Source:
The Hebrew University of Jerusalem
Summary:
When exposed to repeated cycles of antibiotics, within days bacteria can evolve a new adaptation, by remaining dormant for the treatment period to survive antibiotic stress. The results show for the first time that bacteria can develop a biological timer to survive antibiotic exposure. With this new understanding, scientists could develop new approaches for slowing the evolution of antibiotic resistance.

Scanning electron micrograph of Escherichia coli, grown in culture and adhered to a cover slip.
Credit: NIH/NIAID

The ability of microorganisms to overcome antibiotic treatments is one of the top concerns of modern medicine. The effectiveness of many antibiotics has been reduced by bacteria's ability to rapidly evolve and develop strategies to resist antibiotics. Bacteria achieve this by specific mechanisms that are tailored to the molecular structure or function of a particular antibiotic. For example, bacteria would typically develop drug resistance by evolving a mutation that breaks down the drug.

Related Articles


Researchers at the Hebrew University of Jerusalem set out to determine if they could predict a different evolutionary process and follow it in real time. Using the quantitative approach of physicists, the team developed experimental tools to measure precisely the bacterial response to antibiotics, and developed a mathematical model of the process. The model led them to hypothesize that a daily three-hour dose would enable the bacteria to predict delivery of the drug, and go dormant for that period in order to survive.

The research was led by Prof. Nathalie Q. Balaban at the Racah Institute of Physics in the Hebrew University's Faculty of Science, working with colleagues at the Racah Institute, the Hebrew University's Sudarsky Center for Computational Biology, and the Broad Institute of Harvard and MIT. The research paper, "Optimization of lag time underlies tolerance in bacterial populations evolved under intermittent antibiotic exposure," appears in the June 25 edition of the journal Nature.

To test their hypothesis, the researchers delivered antibiotics to bacterial populations in the lab for precisely three hours each day. After only ten days they were able to observe the bacteria using a new survival tactic. When exposed to these repeated cycles of antibiotic treatments, the bacteria evolved an adaptation to the duration of the antibiotic stress by remaining dormant for the treatment period.

The results demonstrated that bacteria can evolve within days. Most significantly, it showed for the first time that bacteria can develop a biological timer to survive under antibiotic exposure.

To further test their hypothesis, the researchers delivered antibiotics for different periods, exposing three different bacteria populations to repeated daily antibiotic exposures lasting 3, 5, or 8 hours. Remarkably, each of the populations adapted by prolonging their dormant stage to match the exposure duration.

With this new understanding of how bacterial populations evolve survival strategies against antibiotics, scientists could develop new approaches for slowing the evolution of antibiotic resistance.

Now that they have identified the mutation responsible for the biological timer, the researchers want to gather clinical data to see if a similar timed response to antibiotics is active in people, allowing bacteria to render less effective the antibiotics people take on a fixed schedule. If this is discovered to be the case, it may explain the failure of antibiotic treatments observed in several diseases. In the future, it may help doctors to recommend different treatment schedules. It could also lead to the development and greater use of drugs that can maintain constant levels in the body.

According to the researchers, the study demonstrates that quantitative approaches from Physics can be used to address fundamental as well as clinically relevant issues in Biology.


Story Source:

The above story is based on materials provided by The Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ofer Fridman, Amir Goldberg, Irine Ronin, Noam Shoresh, Nathalie Q. Balaban. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 2014; DOI: 10.1038/nature13469

Cite This Page:

The Hebrew University of Jerusalem. "A first: Scientists show bacteria can evolve biological timer to survive antibiotics." ScienceDaily. ScienceDaily, 30 June 2014. <www.sciencedaily.com/releases/2014/06/140630103140.htm>.
The Hebrew University of Jerusalem. (2014, June 30). A first: Scientists show bacteria can evolve biological timer to survive antibiotics. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140630103140.htm
The Hebrew University of Jerusalem. "A first: Scientists show bacteria can evolve biological timer to survive antibiotics." ScienceDaily. www.sciencedaily.com/releases/2014/06/140630103140.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins