Featured Research

from universities, journals, and other organizations

Could boosting brain cells' appetites fight disease? New research shows promise

Date:
July 3, 2014
Source:
University of Michigan Health System
Summary:
Deep inside the brains of people with dementia and Lou Gehrig’s disease, globs of abnormal protein gum up the inner workings of brain cells – dooming them to an early death. But boosting those cells’ natural ability to clean up those clogs might hold the key to better treatment for such conditions.

Two drugs that boost autophagy led to longer survival of neurons grown from stem cells derived from the cells of patients with ALS (middle two lines).
Credit: University of Michigan/Nature Chemical Biology

Deep inside the brains of people with dementia and Lou Gehrig's disease, globs of abnormal protein gum up the inner workings of brain cells -- dooming them to an early death.

Related Articles


But boosting those cells' natural ability to clean up those clogs might hold the key to better treatment for such conditions.

That's the key finding of new research from a University of Michigan Medical School physician scientist and his colleagues in California and the United Kingdom. They reported their latest findings this week in the journal Nature Chemical Biology.

Though the team showed the effect worked in animals and human neurons from stem cells, not patients, their discoveries point the way to find new medicines that boost the protein-clearing cleanup process.

The work also shows how an innovative microscope technique can help researchers see what's going on inside brain cells, as they labor to clear out the protein buildup.

The researchers focused on a crucial cell-cleaning process called autophagy -- a hot topic in basic medical research these days, as scientists discover its important role in many conditions. In autophagy, cells bundle unwanted materials up, break them down and push the waste products out.

In the newly published research, the team showed how the self-cleaning capacity of some brain cells gets overwhelmed if the cells make too much of an abnormal protein called TDP43. The found that cells vary greatly in how quickly their autophagy capacity gets swamped.

But they also showed how three drugs that boost autophagy -- speeding up the clean-out process -- could keep the brain cells alive longer.

Longer-living, TDP43-clearing brain cells are theoretically what people with Lou Gehrig's disease (amyotrophic lateral sclerosis or ALS) and certain forms of dementia (called frontotemporal) need. But only further research will show for sure.

Sami Barmada, M.D., Ph.D., the U-M neurologist and scientist who is first author of the new study, says the new findings are encouraging -- and so is the success of a microscope technique used in the research. His new lab, in the U-M Department of Neurology, is continuing to refine ways to view the inner workings of nerve cells.

"Using this new visualization technique, we could truly see how the protein was being cleared, and therefore which compounds could enhance the pace of clearance and shorten the half-life of TDP43 inside cells," he says. "This allowed us to see that increased autophagy was directly related to improved cell survival."

Barmada worked on the team at the Gladstone Institutes and the University of California San Francisco headed by Steven Finkbeiner, M.D., Ph.D., that published the new findings. The team used stem cells derived from the cells of people who have ALS to grow neurons and astrocytes -- the two types of brain cell most crucial to normal brain function.

Because he both sees patients in clinic and studies neurological disease in the laboratory, Barmada brings a special perspective to the research.

At U-M, he specializes in treating patients who have neurological diseases that affect both thinking and muscle control. About a third of ALS patients develop signs of frontotemporal dementia, also called FTD -- and about 10 percent of people with FTD also have a motor neuron disease that affects their brain's ability to control muscle movement.

One of the drugs tested in the study, an antipsychotic drug developed in the 1960s to treat people with schizophrenia, had actually shown some anti-dementia promise in human ALS patients, but comes with many side effects. Barmada notes that Finkbeiner's team at the Gladstone Institute is already working to identify other compounds that could produce the effect with fewer side effects.

Interestingly, small studies have suggested that people with schizophrenia who take antipsychotic drugs are much less likely to develop ALS.

Barmada's work at U-M now focuses on the connection between brain cells' ability to clear abnormal proteins. He also studies the cells' regulation of RNA molecules created as part of expressing protein-encoding genes. Looking further upstream in the protein-producing process could yield further clues to why disease develops and what can be done about it, he says.

The research was sponsored by Barmada's National Institutes of Neurological Disorders and Stroke grant NS072233, as well as Finkbeiner's grants (NS039074, NS083390, NS081844 and NS07837), by the ALS Association, the Robert Packard Center for ALS Research, the William H. Adams Foundation, and Target ALS. In addition to Barmada and Finkbeiner, the research team included Andrey Tsvetkov, Arpana Arjun, Andreas Serio, and Siddharthan Chandran, as well as others.

Barmada also receives funding from the U-M Medical School's Protein Folding Disorders Initiative, part of the school's Fast Forward Strategic Research Initiative.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sami J Barmada, Andrea Serio, Arpana Arjun, Bilada Bilican, Aaron Daub, D Michael Ando, Andrey Tsvetkov, Michael Pleiss, Xingli Li, Daniel Peisach, Christopher Shaw, Siddharthan Chandran, Steven Finkbeiner. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nature Chemical Biology, 2014; DOI: 10.1038/nchembio.1563

Cite This Page:

University of Michigan Health System. "Could boosting brain cells' appetites fight disease? New research shows promise." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703112419.htm>.
University of Michigan Health System. (2014, July 3). Could boosting brain cells' appetites fight disease? New research shows promise. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2014/07/140703112419.htm
University of Michigan Health System. "Could boosting brain cells' appetites fight disease? New research shows promise." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703112419.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins