Featured Research

from universities, journals, and other organizations

New strategy could uncover genes at the root of psychiatric illnesses

Date:
July 3, 2014
Source:
Cell Press
Summary:
Understanding the basis of psychiatric disorders has been extremely challenging because there are many genetic variants that may increase risk but are insufficient to cause disease. Now investigators describe a strategy that may help reveal how such 'subthreshold' genetic risks interact with other risk factors or environmental exposures to affect the development of the nervous system. Their research pinpoints a genetic variant that may predispose individuals to schizophrenia.

Yoon et al. use modeling in iPSCs and mice to examine the functional effects of 15q11.2 CNVs, a known risk factor for several neuropsychiatric disorders including schizophrenia. Their analysis highlights defects in adherens junctions and polarity in neural stem cells associated with haploinsufficiency of the cytoskeletal regulator CYFIP1. The cover image was created using images of neural rosettes derived from human iPSCs with and without a 15q11.2 microdeletion (round circles) and images of radial glial cells in the developing mouse cortex (thin filaments), and it is inspired by July 4th fireworks.
Credit: Ki-Jun Yoon

Understanding the basis of psychiatric disorders has been extremely challenging because there are many genetic variants that may increase risk but are insufficient to cause disease. Now investigators reporting in the July 3rd issue of the Cell Press journal Cell Stem Cell describe a strategy that may help reveal how such "subthreshold" genetic risks interact with other risk factors or environmental exposures to affect the development of the nervous system. Their research pinpoints a genetic variant that may predispose individuals to schizophrenia.

Related Articles


The work takes advantage of a recently developed technology that allows skin cells from patients to be reprogrammed into induced pluripotent stem cells (iPSCs) that can then generate any cell type in the body. Through this technology, scientists obtained stem cells from individuals with a genetic abnormality that confers increased susceptibility to schizophrenia, and they observed deficits during nerve development that could be traced to a specific gene called CYFIP1, which helps maintain a nerve cell's structure. The team then blocked the expression of this gene in developing mouse embryos and noticed defects in the formation of the cerebral cortex, a brain region that plays an important role in consciousness.

Next, the scientists turned to human genetic studies to see how CYFIP might interact with other factors. They found that mutations in two genes within a cellular pathway linked to CYFIP1 led to a significantly increased risk of schizophrenia. The findings support the theory that multiple factors within the same pathway may interact to affect one's risk for psychiatric disorders.

"We were able to use a set of cutting-edge tools to gain insight into a critical cellular process for normal brain development, the dysregulation of which may be a manifestation of a genetic predisposition for schizophrenia," says senior author Dr. Guo-li Ming, of Johns Hopkins University School of Medicine. The researchers' strategy -- generating disease-specific nerve cells, identifying a causative gene for developmental defects, validating the gene-specific defect in animal models, and then investigating interactions with other genes both in animal models and in humans -- represents a promising new approach for understanding the mechanisms underlying some of the most intractable psychiatric illnesses.

The work also highlights the promise of iPSC technology as a discovery tool in understanding and treating human disorders. "Despite an enormous amount of time and resources devoted to producing solid, reproducible results in animal models, far too often, results from preclinical trials deviate from our expectations," says co-author Dr. Hongjun Song. "The lack of access to disease-relevant human cell types has been a missing link in our current drug discovery process, which has now been resolved through advances in cellular reprogramming."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ki-Jun Yoon, HaNam Nguyen, Gianluca Ursini, Fengyu Zhang, Nam-Shik Kim, Zhexing Wen, Georgia Makri, David Nauen, JooHeon Shin, Youngbin Park, Raeeun Chung, Eva Pekle, Ce Zhang, Maxwell Towe, SyedMohammedQasim Hussaini, Yohan Lee, Dan Rujescu, David St.Clair, JoelE. Kleinman, ThomasM. Hyde, Gregory Krauss, KimberlyM. Christian, JudithL. Rapoport, DanielR. Weinberger, Hongjun Song, Guo-li Ming. Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junctions and Polarity. Cell Stem Cell, 2014; 15 (1): 79 DOI: 10.1016/j.stem.2014.05.003

Cite This Page:

Cell Press. "New strategy could uncover genes at the root of psychiatric illnesses." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703125535.htm>.
Cell Press. (2014, July 3). New strategy could uncover genes at the root of psychiatric illnesses. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/07/140703125535.htm
Cell Press. "New strategy could uncover genes at the root of psychiatric illnesses." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703125535.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins