Featured Research

from universities, journals, and other organizations

New strategy could uncover genes at the root of psychiatric illnesses

Date:
July 3, 2014
Source:
Cell Press
Summary:
Understanding the basis of psychiatric disorders has been extremely challenging because there are many genetic variants that may increase risk but are insufficient to cause disease. Now investigators describe a strategy that may help reveal how such 'subthreshold' genetic risks interact with other risk factors or environmental exposures to affect the development of the nervous system. Their research pinpoints a genetic variant that may predispose individuals to schizophrenia.

Yoon et al. use modeling in iPSCs and mice to examine the functional effects of 15q11.2 CNVs, a known risk factor for several neuropsychiatric disorders including schizophrenia. Their analysis highlights defects in adherens junctions and polarity in neural stem cells associated with haploinsufficiency of the cytoskeletal regulator CYFIP1. The cover image was created using images of neural rosettes derived from human iPSCs with and without a 15q11.2 microdeletion (round circles) and images of radial glial cells in the developing mouse cortex (thin filaments), and it is inspired by July 4th fireworks.
Credit: Ki-Jun Yoon

Understanding the basis of psychiatric disorders has been extremely challenging because there are many genetic variants that may increase risk but are insufficient to cause disease. Now investigators reporting in the July 3rd issue of the Cell Press journal Cell Stem Cell describe a strategy that may help reveal how such "subthreshold" genetic risks interact with other risk factors or environmental exposures to affect the development of the nervous system. Their research pinpoints a genetic variant that may predispose individuals to schizophrenia.

The work takes advantage of a recently developed technology that allows skin cells from patients to be reprogrammed into induced pluripotent stem cells (iPSCs) that can then generate any cell type in the body. Through this technology, scientists obtained stem cells from individuals with a genetic abnormality that confers increased susceptibility to schizophrenia, and they observed deficits during nerve development that could be traced to a specific gene called CYFIP1, which helps maintain a nerve cell's structure. The team then blocked the expression of this gene in developing mouse embryos and noticed defects in the formation of the cerebral cortex, a brain region that plays an important role in consciousness.

Next, the scientists turned to human genetic studies to see how CYFIP might interact with other factors. They found that mutations in two genes within a cellular pathway linked to CYFIP1 led to a significantly increased risk of schizophrenia. The findings support the theory that multiple factors within the same pathway may interact to affect one's risk for psychiatric disorders.

"We were able to use a set of cutting-edge tools to gain insight into a critical cellular process for normal brain development, the dysregulation of which may be a manifestation of a genetic predisposition for schizophrenia," says senior author Dr. Guo-li Ming, of Johns Hopkins University School of Medicine. The researchers' strategy -- generating disease-specific nerve cells, identifying a causative gene for developmental defects, validating the gene-specific defect in animal models, and then investigating interactions with other genes both in animal models and in humans -- represents a promising new approach for understanding the mechanisms underlying some of the most intractable psychiatric illnesses.

The work also highlights the promise of iPSC technology as a discovery tool in understanding and treating human disorders. "Despite an enormous amount of time and resources devoted to producing solid, reproducible results in animal models, far too often, results from preclinical trials deviate from our expectations," says co-author Dr. Hongjun Song. "The lack of access to disease-relevant human cell types has been a missing link in our current drug discovery process, which has now been resolved through advances in cellular reprogramming."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ki-Jun Yoon, HaNam Nguyen, Gianluca Ursini, Fengyu Zhang, Nam-Shik Kim, Zhexing Wen, Georgia Makri, David Nauen, JooHeon Shin, Youngbin Park, Raeeun Chung, Eva Pekle, Ce Zhang, Maxwell Towe, SyedMohammedQasim Hussaini, Yohan Lee, Dan Rujescu, David St.Clair, JoelE. Kleinman, ThomasM. Hyde, Gregory Krauss, KimberlyM. Christian, JudithL. Rapoport, DanielR. Weinberger, Hongjun Song, Guo-li Ming. Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junctions and Polarity. Cell Stem Cell, 2014; 15 (1): 79 DOI: 10.1016/j.stem.2014.05.003

Cite This Page:

Cell Press. "New strategy could uncover genes at the root of psychiatric illnesses." ScienceDaily. ScienceDaily, 3 July 2014. <www.sciencedaily.com/releases/2014/07/140703125535.htm>.
Cell Press. (2014, July 3). New strategy could uncover genes at the root of psychiatric illnesses. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/07/140703125535.htm
Cell Press. "New strategy could uncover genes at the root of psychiatric illnesses." ScienceDaily. www.sciencedaily.com/releases/2014/07/140703125535.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins