Featured Research

from universities, journals, and other organizations

Orgainic solar modules embedded in glass last longer

Date:
July 8, 2014
Source:
Fraunhofer-Gesellschaft
Summary:
Organic solar modules have advantages over silicon solar cells. However, one critical problem is their shorter operating life. Researchers are working on a promising solution: they are using flexible glass as a carrier substrate that better protects the components.

Organic photovoltaics printed on ultra-thin glass.
Credit: Fraunhofer IAP

Organic solar modules have advantages over silicon solar cells. However, one critical problem is their shorter operating life. Researchers are working on a promising solution: they are using flexible glass as a carrier substrate that better protects the components.

This approach is already being employed in electronic devices to some extent today: organic photovoltaics (OPVs) are embedded in film. These OPVs are a promising alternative to silicon-based solar cells. The materials can also be processed at atmospheric pressure. However, the main advantage is the modules can be manufactured using printing technology -- this is faster and more efficient that the involved processes necessary for fabrication of inorganic components. A flexible type of substrate material is necessary for fabrication that uses a printing process. Polymer films that have certain serious disadvantages have been employed up to now. The films are somewhat permeable to humidity and oxygen. Both of these attack the sensitive solar modules and significantly reduce their operating life. Up to now, substrates with barrier layers have protected the OPV modules, depending on the application. For higher processing temperatures and longer operating life, different carrier substrates must be used.

Fracture-resistant and extremely strong

Researchers of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, Germany, are working with a new carrier material at present. They are embedding the solar modules in a thin layer of glass. "Glass is not only the ideal encapsulating material, it also tolerates process temperatures of up to 400 degrees," explains Danny Krautz, project manager in the Functional Materials and Components research section at IAP. A specialized glass from Corning Inc. is being employed in the research work. Thanks to its special physical properties, layers can be made that are only 100 micrometers thick. That corresponds roughly to the thickness of a sheet of paper and has nothing to do with the type used to make drinking glasses. The special glass is not only fracture-resistant and extremely strong, it is so flexible that it can be gently bowed even in its solid form. The researchers in Potsdam in cooperation with their partner Corning have already created the first working OPVs with this material by processing stacks sheet-by-sheet.

Production on rolls

The goal is to fabricate these modules in rolls as well. The carrier substrate will be wound on a roll in this case, similar to how newspapers are printed. An empty roll is positioned opposite it. The photoactive layers and electrodes are printed in several steps between the two rolls. Large surfaces can be manufactured effectively in series using this fabrication technology. The team from IAP has already begun a first test of how the flexible glass could be processed in this way. "We were immediately successful on our first run in producing homogenous layers on smaller substrate dimensions," according to the scientist. The technology needs to be modified at many points for the process to meet the demands of industrial applications -- and the Potsdam team is already working on these. Long-lived, robust, high-performance OPVs can be fabricated with this technology for use in a wide range of applications -- from tiny solar cells in mobile phones to large-scale photovoltaic modules.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Orgainic solar modules embedded in glass last longer." ScienceDaily. ScienceDaily, 8 July 2014. <www.sciencedaily.com/releases/2014/07/140708092140.htm>.
Fraunhofer-Gesellschaft. (2014, July 8). Orgainic solar modules embedded in glass last longer. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/07/140708092140.htm
Fraunhofer-Gesellschaft. "Orgainic solar modules embedded in glass last longer." ScienceDaily. www.sciencedaily.com/releases/2014/07/140708092140.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins