Featured Research

from universities, journals, and other organizations

Gut microbes turn carbs into colorectal cancer, study shows

Date:
July 17, 2014
Source:
Cell Press
Summary:
Colorectal cancer has been linked to carbohydrate-rich western diets, but the underlying mechanisms have been unclear. A new study shows that gut microbes metabolize carbohydrates in the diet, causing intestinal cells to proliferate and form tumors in mice that are genetically predisposed to colorectal cancer. Treatment with antibiotics or a low-carbohydrate diet significantly reduced tumors in these mice, suggesting that these easy interventions could prevent a common type of colorectal cancer in humans.

Colorectal cancer has been linked to carbohydrate-rich western diets, but the underlying mechanisms have been unclear. A study published by Cell Press July 17th in the journal Cell shows that gut microbes metabolize carbohydrates in the diet, causing intestinal cells to proliferate and form tumors in mice that are genetically predisposed to colorectal cancer. Treatment with antibiotics or a low-carbohydrate diet significantly reduced tumors in these mice, suggesting that these easy interventions could prevent a common type of colorectal cancer in humans.

Related Articles


"Because hereditary colorectal cancer is associated with aggressive and rapid tumor development, it is critical to understand how major environmental factors such as microbes and diet interact with genetic factors to potentially affect disease progression," says senior study author Alberto Martin of the University of Toronto. "Our study provides novel insights into this question by showing that gut bacteria interact with a carbohydrate-rich diet to stimulate a prevalent type of hereditary colon cancer."

Carbohydrates account for about half of the daily caloric intake of adults on a western-style diet, and previous studies have linked carbohydrate-rich diets to colorectal cancer in humans. This type of cancer is also frequently associated with mutations in a tumor suppressor gene called APC as well as the MSH2 gene, which plays a critical role in repairing DNA damage. However, it has been unclear why mutations affecting the DNA repair pathway are much more common in colorectal cancer compared with other cancers. Because gut microbes also contribute to the development of colorectal cancer, Martin and his team suspected that they could interact with diet to explain how the mutations could cause this type of cancer.

To explore this question in the new study, Martin and his collaborators used mice that had APC and MSH2 mutations and thus were predisposed to develop colorectal cancer. Treatment with either antibiotics or a low-carbohydrate diet reduced cell proliferation as well as the number of tumors in the small intestines and colons of these mice. These two treatments also reduced levels of certain gut microbes that metabolize carbohydrates to produce a fatty acid called butyrate. When the researchers increased butyrate levels in the antibiotic-treated mice, cell proliferation and the number of tumors increased in the small intestines.

Taken together, the findings suggest that carbohydrate-derived metabolites produced by gut microbes drive abnormal cell proliferation and tumor development in mice genetically predisposed to colorectal cancer. "By providing a direct link between genetics and gut microbes, our findings suggest that a diet reduced in carbohydrates as well as alterations in the intestinal microbial community could be beneficial to those individuals that are genetically predisposed to colorectal cancer," Martin says.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Antoaneta Belcheva, Thergiory Irrazabal, SusanJ. Robertson, Catherine Streutker, Heather Maughan, Stephen Rubino, EduardoH. Moriyama, JuliaK. Copeland, Sachin Kumar, Blerta Green, Kaoru Geddes, RossannaC. Pezo, WilliamW. Navarre, Michael Milosevic, BrianC. Wilson, StephenE. Girardin, ThomasM.S. Wolever, Winfried Edelmann, DavidS. Guttman, DanaJ. Philpott, Alberto Martin. Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells. Cell, 2014; 158 (2): 288 DOI: 10.1016/j.cell.2014.04.051

Cite This Page:

Cell Press. "Gut microbes turn carbs into colorectal cancer, study shows." ScienceDaily. ScienceDaily, 17 July 2014. <www.sciencedaily.com/releases/2014/07/140717124836.htm>.
Cell Press. (2014, July 17). Gut microbes turn carbs into colorectal cancer, study shows. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2014/07/140717124836.htm
Cell Press. "Gut microbes turn carbs into colorectal cancer, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/07/140717124836.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins