Featured Research

from universities, journals, and other organizations

Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome

Date:
July 18, 2014
Source:
Penn State
Summary:
Learning the role of immune-system cells in healthy digestive tracts and how they interact with neighboring nerve cells may lead to new treatments for irritable bowel syndrome, researchers say. The muscular lining of the intestine contains a distinct kind of macrophage, an immune system cell that helps fight infections. The role of these cells in normal colon function is not known, although they have been linked to inflammation after abdominal surgery.

Learning the role of immune-system cells in healthy digestive tracts and how they interact with neighboring nerve cells may lead to new treatments for irritable bowel syndrome (IBS). Researchers from Penn State College of Medicine, in collaboration with other scientists, have reported the role of macrophages in regulating the contractions of the colon to push digested material through the digestive tract.

The muscular lining of the intestine contains a distinct kind of macrophage, an immune system cell that helps fight infections. The role of these cells in normal colon function is not known, although they have been linked to inflammation after abdominal surgery.

"Very little is known about the function of muscularis macrophages, mainly because these cells are difficult to isolate from intestinal tissue," said Milena Bogunovic, assistant professor of microbiology and immunology.

Digested material is moved through the intestines by the contraction and relaxation of intestinal muscles. The pattern and frequency of these contractions are controlled by the signals from the intestinal nervous system. In patients with diseases like IBS, the signals are overactive and stimulation is exaggerated.

The researchers developed a method to deplete muscularis macrophages in the intestines of mice to determine their function. They report their findings in the journal Cell.

"After macrophage depletion, we observed that the normal intestinal movements are irregular, probably because the muscular contractions were poorly coordinated, suggesting that intestinal movements are regulated by macrophages," Bogunovic said.

After confirming the role of the macrophages in the function of the digestive tract, the researchers looked for how the regulation happens. They compared the genetic code of different types of macrophages to find non-immune genes highly active in muscularis macrophages, identifying bone morphogenetic protein 2. BMP2 is one of a family of proteins thought to control organ development.

Blocking the effect of BMP2 mirrored the effects of the macrophage removal, confirming that the protein is used for regulation of intestinal movements. The BMP2 is used by neighboring nerve cells, intestinal neurons, which in turn secrete a protein called colony stimulatory factor 1 (CSF1) that supports macrophages.

"Two completely different cell types help each other to carry one key function, to regulate the physiology of the gut," Bogunovic said.

The interactions between the two cells types are orchestrated by the "good" bacteria in the intestine that aids in healthy digestion.

By giving mice antibiotics to kill off the bacteria, the communication between macrophages and neurons is interrupted resulting in decreased BMP2 and CSF1 production and disrupted intestinal contractions.

By restoring the "good" bacteria in the mice, the miscommunication between macrophages and neurons is reversed, showing that the dialogue between the macrophages and nervous system is adaptable to the changes in the bacterial environment.

A potential cause of IBS is a change in the bacterial environment in the intestine.

"By better understanding how the nervous system cells, the muscularis macrophages and signals from inside the intestine interact, we may be able to find new treatments for IBS, or even prevent it," Bogunovic said.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul Andrew Muller, Balázs Koscsó, Gaurav Manohar Rajani, Korey Stevanovic, Marie-Luise Berres, Daigo Hashimoto, Arthur Mortha, Marylene Leboeuf, Xiu-Min Li, Daniel Mucida, E. Richard Stanley, Stephanie Dahan, Kara Gross Margolis, Michael David Gershon, Miriam Merad, Milena Bogunovic. Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility. Cell, 2014; 158 (2): 300 DOI: 10.1016/j.cell.2014.04.050

Cite This Page:

Penn State. "Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome." ScienceDaily. ScienceDaily, 18 July 2014. <www.sciencedaily.com/releases/2014/07/140718131506.htm>.
Penn State. (2014, July 18). Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2014/07/140718131506.htm
Penn State. "Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome." ScienceDaily. www.sciencedaily.com/releases/2014/07/140718131506.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) — The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) — Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) — The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) — No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins