Featured Research

from universities, journals, and other organizations

Symbiotic survival in marine bivalve mollusks

Date:
August 1, 2014
Source:
Geological Society of America
Summary:
One of the most diverse families in the ocean today -- marine bivalve mollusks known as Lucinidae (or lucinids) -- originated more than 400 million years ago in the Silurian period, with adaptations and life habits like those of its modern members. A new study tracks the remarkable evolutionary expansion of the lucinids through significant symbiotic relationships.

One of the most diverse families in the ocean today -- marine bivalve mollusks known as Lucinidae (or lucinids) -- originated more than 400 million years ago in the Silurian period, with adaptations and life habits like those of its modern members. This Geology study by Steven Stanley of the University of Hawaii, published online on 25 July 2014, tracks the remarkable evolutionary expansion of the lucinids through significant symbiotic relationships.

Related Articles


At is origin, the Lucinidae family remained at very low diversity until the rise of mangroves and seagrasses near the end of the Cretaceous. According to Stanley, the mangroves and seagrasses created protective habitats in which the bivalve mollusks could thrive, in turn providing benefit through a sort of tri-level symbiosis.

Stanley writes that what was especially important was the lucinids' development of a symbiotic relationship with seagrasses. The lucinids flourished as they took advantage of the oxygen-poor, sulfide-rich sediments below roots and rhizomes. These habitats provided a rich supply of sulfur-oxidizing bacteria (or endosymbionts), which the bivalves "farmed" on their gills and then consumed. At the same time, the seagrasses benefited from the uptake of (to them) toxic sulfide by the bivalves.

The Cretaceous mass extinction, which killed off not only the dinosaurs but also many forms of marine life, had little impact on the lucinids. Stanley writes that this can be attributed to the fact that the bivalves relied heavily on the endosymbiont bacteria for nutrition at a time when productivity of marine algae collapsed and many suspension-feeding groups of animals died out. About 500 lucinid species exist today, with by far the highest diversity in shallow-sea seagrass meadows.


Story Source:

The above story is based on materials provided by Geological Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. M. Stanley. Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves. Geology, 2014; DOI: 10.1130/G35942.1

Cite This Page:

Geological Society of America. "Symbiotic survival in marine bivalve mollusks." ScienceDaily. ScienceDaily, 1 August 2014. <www.sciencedaily.com/releases/2014/08/140801091232.htm>.
Geological Society of America. (2014, August 1). Symbiotic survival in marine bivalve mollusks. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/08/140801091232.htm
Geological Society of America. "Symbiotic survival in marine bivalve mollusks." ScienceDaily. www.sciencedaily.com/releases/2014/08/140801091232.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins