Featured Research

from universities, journals, and other organizations

On-chip topological light: First measurements of transmission and delay

Date:
August 1, 2014
Source:
Joint Quantum Institute
Summary:
First came the concept of topological light. Then came images of topological light moving around a microchip. Now full measurements of the transmission of light around and through the chip.

Light enters a two-dimensional ring-resonator array from the lower left and exits at the lower right. Light that follows the edge of the array (blue) does not suffer energy loss and exits after a consistent amount of delay. Light that travels into the interior of the array (green) suffers energy loss
Credit: Sean Kelley/JQI

Topological transport of light is the photonic analog of topological electron flow in certain semiconductors. In the electron case, the current flows around the edge of the material but not through the bulk. It is "topological" in that even if electrons encounter impurities in the material the electrons will continue to flow without losing energy.

Related Articles


In the photonic equivalent, light flows not through and around a regular material but in a meta-material consisting of an array of tiny glass loops fabricated on a silicon substrate. If the loops are engineered just right, the topological feature appears: light sent into the array easily circulates around the edge with very little energy loss (even if some of the loops aren't working) while light taking an interior route suffers loss.

Mohammad Hafezi and his colleagues at the Joint Quantum Institute have published a series of papers on the subject of topological light. The first pointed out the potential application of robustness in delay lines and conceived a scheme to implement quantum Hall models in arrays of photonic loops. In photonics, signals sometimes need to be delayed, usually by sending light into a kilometers-long loop of optical fiber. In an on-chip scheme, such delays could be accomplished on the microscale; this is in addition to the energy-loss reduction made possible by topological robustness.

The next paper reported on results from an actual experiment. Since the tiny loops aren't perfect, they do allow a bit of light to escape vertically out of the plane of the array. This faint light allowed the JQI experimenters to image the course of light. This confirmed the plan that light persists when it goes around the edge of the array but suffers energy loss when traveling through the bulk.

The third paper, appearing now in Physical Review Letters, actually delivers detailed measurements of the transmission (how much energy is lost) and delay for edge-state light and for bulk-route light. The paper is notable enough to have received an "editor's suggestion" designation. "Apart from the potential photonic-chip applications of this scheme," said Hafezi, "this photonic platform could allow us to investigate fundamental quantum transport properties."

Another measured quality is consistency. Sunil Mittal, a graduate student at the University of Maryland and first author on the paper, points out that microchip manufacturing is not a perfect process. "Irregularities in integrated photonic device fabrication usually result in device-to-device performance variations," he said. And this usually undercuts the microchip performance. But with topological protection (photons traveling at the edge of the array are practically invulnerable to impurities) at work, consistency is greatly strengthened.

Indeed, the authors, reporting trials with numerous array samples, reveal that for light taking the bulk (interior) route in the array, the delay and transmission of light can vary a lot, whereas for light making the edge route, the amount of energy loss is regularly less and the time delay for signals more consistent. Robustness and consistency are vital if you want to integrate such arrays into photonic schemes for processing quantum information.

How does the topological property emerge at the microscopic level? First, look at the electron topological behavior, which is an offshoot of the quantum Hall effect. Electrons, under the influence of an applied magnetic field can execute tiny cyclonic orbits. In some materials, called topological insulators, no external magnetic field is needed since the necessary field is supplied by spin-orbit interactions -- that is, the coupling between the orbital motion of electrons and their spins. In these materials the conduction regime is topological: the material is conductive around the edge but is an insulator in the interior.

And now for the photonic equivalent. Light waves do not usually feel magnetic fields, and if they do it is very weak. In the photonic case, the equivalent of a magnetic field is supplied by a subtle phase shift imposed on the light as it circulates around the loops. Actually the loops in the array are of two kinds: resonator loops designed to exactly accommodate light at a certain frequency, allowing the waves to circle the loop many times. Link loops, by contrast, are not exactly suited to the waves, and are designed chiefly to pass the light onto the neighboring resonator loop.

Light that circulates around one unit cell of the loop array will undergo a slight phase change, an amount signified by the letter phi. That is, the light signal, in coming around the unit cell, re-arrives where it started advanced or retarded just a bit from its original condition. Just this amount of change imparts the topological robustness to the global transmission of the light in the array.

In summary, documented on-chip light delay and a robust, consistent, low-loss transport of light has now been demonstrated. The transport of light is tunable to a range of frequencies and the chip can be manufactured using standard micro-fabrications techniques.


Story Source:

The above story is based on materials provided by Joint Quantum Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and M. Hafezi. Topologically Robust Transport of Photons in a Synthetic Gauge Field. Physical Review Letters, August 2014 [link]

Cite This Page:

Joint Quantum Institute. "On-chip topological light: First measurements of transmission and delay." ScienceDaily. ScienceDaily, 1 August 2014. <www.sciencedaily.com/releases/2014/08/140801171118.htm>.
Joint Quantum Institute. (2014, August 1). On-chip topological light: First measurements of transmission and delay. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2014/08/140801171118.htm
Joint Quantum Institute. "On-chip topological light: First measurements of transmission and delay." ScienceDaily. www.sciencedaily.com/releases/2014/08/140801171118.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins