Featured Research

from universities, journals, and other organizations

Another potential ALS treatment avenue identfied by researchers

Date:
August 6, 2014
Source:
Harvard University
Summary:
A series of studies that begun eight years ago has lead to a report that may be a major step forward in the quest to develop real treatments for amyotrophic lateral sclerosis, ALS, or Lou Gehrig's disease.

This image depicts graduate student Sophie De Boer, (l), and Prof. Kevin Eggan (r) discussing their latest work.
Credit: B. D. Colen/Harvard University

A series of studies begun by Harvard Stem Cell Institute (HSCI) scientists eight years ago has lead to a report published today that may be a major step forward in the quest to develop real treatments for amyotrophic lateral sclerosis, ALS, or Lou Gehrig's disease.

Related Articles


The findings by Harvard professor of Stem Cell and Regenerative Biology (HSCRB) Kevin Eggan and colleagues also has produced functionally identical results in human motor neurons in a laboratory dish and in a mouse model of the disease, demonstrating that the modeling of human disease with customized stem cells in the laboratory could someday relatively soon eliminate some of the need for animal testing.

The new study, published today in Science Translational Medicine, suggest that compounds already in clinical trials for other purposes may be promising candidate therapeutics for ALS. The Harvard authors found that genetically intervening in the pathway these drugs act on increased survival time of an ALS animal model 5-10 percent, and while that is a long way from curing the universally fatal neurodegenerative disease, "any ALS patient would be excited about this extended life span," said Eggan, who pioneered the disease in a dish concept.

Sophie De Boer, a graduate student in Eggan's lab, is the first author on the Science Translational Medicine paper.

This latest finding is expected to push towards clinical studies the second major ALS discovery from Eggan's lab in less than a year. The HSCI stem cell biologist, and his neuroscience and neurology collaborators at Massachusetts General Hospital and Boston Children's Hospital, are preparing for a phase I clinical trial of a medication already approved for epilepsy which Eggan and colleagues discovered quiets disease related electrical excitability in the motor neurons effected in ALS.

In a paper in 2007, Eggan and colleagues demonstrated that glial cells, background cells in the nervous system, were involved in motor neuron degeneration in a mouse model of ALS. And the following year the researchers reported that the same thing was happening in human motor neurons made from patient stem cells, and proposed that prostanoid molecules, a group of substances involved in inflammation in everything from pain to pregnancy, might be playing a role in the glial cells.

Today the researchers reported they have confirmed there is a change in prostanoid receptors in the gial cells playing a role in ALS, and with genetic and chemical experiments they showed that this is playing a role in ALS. They further report that when the effected receptor is blocked, the ALS damage done by the glial cells is reduced.

This latest work, says Eggan, first done in human motor neurons in a dish, and then in a mouse model of ALS, "says that indeed this stem cell model was predictive of something that can happen inside a whole animal, and its important because it demonstrates that this is really an important target for an ALS therapeutic. If we can inhibit this receptor in an ALS patient, we might slow down the progression of the disease, and that would be a huge step."

Eggan said "one feature of the glial cells in ALS that attack motor neurons is that they have higher expression of this prostanoid receptor. Removing just one of the two copies of the receptor in the glial cells had an effect on extending the life span" of the ALS mice," Eggan said, and "inhibition by a drug is unlikely to have an effect as complete as a knockout in the mice."

Eggan said that experiments on human stem cell-generated ALS motor neurons also show that "if we inhibit that receptor in the ALS cells with a chemical, those cells lose their toxicity to motor neurons

"This is a very exciting period for those whose lives are threatened by ALS, and it is exciting for my lab," Eggan said. "First we recently identified a pathway that we think is important for degeneration inside the motor neuron, and now we've found this pathway in cells outside the motor neuron. This has potential to have a very substantial effect on what's happening in ALS."


Story Source:

The above story is based on materials provided by Harvard University. The original article was written by B. D. Colen. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. S. de Boer, K. Koszka, E. Kiskinis, N. Suzuki, B. N. Davis-Dusenbery, K. Eggan. Genetic validation of a therapeutic target in a mouse model of ALS. Science Translational Medicine, 2014; 6 (248): 248ra104 DOI: 10.1126/scitranslmed.3009351

Cite This Page:

Harvard University. "Another potential ALS treatment avenue identfied by researchers." ScienceDaily. ScienceDaily, 6 August 2014. <www.sciencedaily.com/releases/2014/08/140806142207.htm>.
Harvard University. (2014, August 6). Another potential ALS treatment avenue identfied by researchers. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/08/140806142207.htm
Harvard University. "Another potential ALS treatment avenue identfied by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/08/140806142207.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins