Featured Research

from universities, journals, and other organizations

Sensitive acid sensor controls insulin production

Date:
August 11, 2014
Source:
ETH Zürich
Summary:
Many human metabolic functions only run smoothly if the acid level in the body remains neutral and stable. For humans, normal blood pH values lie between 7.35 and 7.45. By way of comparison, an empty stomach is extremely acidic, with a pH value of 1.5. A team of bioengineers has now developed a new implantable molecular device composed of two modules: a sensor that constantly measures blood pH and a gene feedback mechanism that produces the necessary amount of insulin.

An implant constantly monitors the blood’s acidity and responds to diabetic acidosis by producing insulin.
Credit: Graphics: ETH Zurich

Many human metabolic functions only run smoothly if the acid level in the body remains neutral and stable. For humans, normal blood pH values lie between 7.35 and 7.45. By way of comparison, an empty stomach is extremely acidic, with a pH value of 1.5.

Related Articles


The body constantly monitors this narrow pH band and quickly restores the ideal pH values in the event of any deviations. This is because many proteins cease to function properly if fluids in the body become even slightly more acidic. These proteins become unstable and alter their structure or interactions with other proteins, causing entire metabolic pathways to break down.

People with type 1 diabetes are particularly at risk of high acid levels. Their bodies produce no insulin, the hormone that regulates blood sugar levels, so their cells cannot absorb any glucose from the blood and have to tap into another energy source: fat reserves. In doing so, the liver produces beta-hydroxybutyrate, an acid which supplies the muscles and brain with energy via the bloodstream. If the body continues to use fat reserves for energy, however, this produces so much acid that the blood's pH value plummets while the sugar molecules circulate in the blood unused. If the lack of insulin is not noticed or treated in time, people with type 1 diabetes can die from ketoacidosis -- metabolic shock resulting from an excess of beta-hydroxybutyrate.

Sensor measures acidity

A team of bioengineers from ETH Zurich's Department of Biosystems Science and Engineering (D-BSSE) in Basel have now developed a new implantable molecular device composed of two modules: a sensor that constantly measures blood pH and a gene feedback mechanism that produces the necessary amount of insulin. They constructed both modules from biological components, such as various genes and proteins, and incorporated them into cultivated renal cells. The researchers then embedded millions of these customised cells in capsules which can be used as implants in the body.

The heart of the implantable molecular device is the pH sensor, which measures the blood's precise acidity and reacts sensitively to minor deviations from the ideal pH value. If the pH values falls below 7.35, the sensor transmits a signal to trigger the production of insulin. Such a low pH value is specific for type 1 diabetes: although blood pH also drops due to alcohol abuse or exercise on account of the overacidification of the muscles, it does not fall below 7.35. The hormone insulin ensures that the normal cells in the body absorb glucose again and switch from fat to sugar as their energy source for metabolism, and the pH value rises again as a result. Once blood pH returns to the ideal range, the sensor turns itself off and the reprogrammed cells stop producing insulin.

Insulin level back to normal

The researchers have already tested their invention on mice with type 1 diabetes and related acidosis. The results look promising: mice with the capsules implanted produced the amount of insulin appropriate to their individual acid measurements. The hormone level in the blood was comparable to that of healthy mice that regulated their insulin levels naturally. The implant also compensated for larger deviations in blood sugar.

"Applications for humans are conceivable based on this prototype, but they are yet to be developed," says Martin Fussenegger. "We wanted to create a prototype first to see whether molecular prostheses could even be used for such fine adjustments to metabolic processes," he says. Preparing a product like this for the market, however, is beyond the scope of his institute's staff and financial resources, Fussenegger says, and would thus have to be pursued in collaboration with an industrial partner.

Extensive experience in metabolic diseases

Researchers in Fussenegger's group have already made headlines several times with similar synthetic networks. For instance, they developed an implant with genes that could be activated with blue light, thereby producing GLP-1, which regulates insulin production. They also put together a network that eliminates metabolic syndrome, a process set in motion by an authorised blood-pressure medicine. All of these networks respond to a signal and produce a hormonally active substance. The special thing about the new feedback mechanism, however, is that the body itself produces the signal, which is then detected by a sensor that triggers a fine-tuned therapeutic reaction.

Three groups from the D-BSSE worked on the present project. Fussenegger's group developed the genetic network; Professor of Biosystems Engineering Andreas Hierlemann and his team tested the acidity sensor with the aid of microfluidic platforms; and Jörg Stelling, a professor of computational systems biology, modelled it in order to estimate the dynamics of the insulin production.


Story Source:

The above story is based on materials provided by ETH Zürich. Note: Materials may be edited for content and length.


Journal Reference:

  1. David Ausländer, Simon Ausländer, Ghislaine Charpin-El Hamri, Ferdinand Sedlmayer, Marius Müller, Olivier Frey, Andreas Hierlemann, Jörg Stelling, Martin Fussenegger. A Synthetic Multifunctional Mammalian pH Sensor and CO2 Transgene-Control Device. Molecular Cell, 2014; 55 (3): 397 DOI: 10.1016/j.molcel.2014.06.007

Cite This Page:

ETH Zürich. "Sensitive acid sensor controls insulin production." ScienceDaily. ScienceDaily, 11 August 2014. <www.sciencedaily.com/releases/2014/08/140811124535.htm>.
ETH Zürich. (2014, August 11). Sensitive acid sensor controls insulin production. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/08/140811124535.htm
ETH Zürich. "Sensitive acid sensor controls insulin production." ScienceDaily. www.sciencedaily.com/releases/2014/08/140811124535.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins