Featured Research

from universities, journals, and other organizations

'Trojan horse' treatment could beat brain tumors

Date:
August 12, 2014
Source:
University of Cambridge
Summary:
A 'Trojan horse' treatment for an aggressive form of brain cancer, which involves using tiny nanoparticles of gold to kill tumor cells, has been successfully tested by scientists. The ground-breaking technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumor in adults, and notoriously difficult to treat.

This is a c cancer cell containing the nanoparticles. The nanoparticles are colored green, and have entered the nucleus, which is the area in blue.
Credit: M. Welland

A "Trojan horse" treatment for an aggressive form of brain cancer, which involves using tiny nanoparticles of gold to kill tumour cells, has been successfully tested by scientists.

Related Articles


The ground-breaking technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumour in adults, and notoriously difficult to treat. Many sufferers die within a few months of diagnosis, and just six in every 100 patients with the condition are alive after five years.

The research involved engineering nanostructures containing both gold and cisplatin, a conventional chemotherapy drug. These were released into tumour cells that had been taken from glioblastoma patients and grown in the lab.

Once inside, these "nanospheres" were exposed to radiotherapy. This caused the gold to release electrons which damaged the cancer cell's DNA and its overall structure, thereby enhancing the impact of the chemotherapy drug.

The process was so effective that 20 days later, the cell culture showed no evidence of any revival, suggesting that the tumour cells had been destroyed.

While further work needs to be done before the same technology can be used to treat people with glioblastoma, the results offer a highly promising foundation for future therapies. Importantly, the research was carried out on cell lines derived directly from glioblastoma patients, enabling the team to test the approach on evolving, drug-resistant tumours.

The study was led by Mark Welland, Professor of Nanotechnology and a Fellow of St John's College, University of Cambridge, and Dr Colin Watts, a clinician scientist and honorary consultant neurosurgeon at the Department of Clinical Neurosciences. Their work is reported in the Royal Society of Chemistry journal, Nanoscale.

"The combined therapy that we have devised appears to be incredibly effective in the live cell culture," Professor Welland said. "This is not a cure, but it does demonstrate what nanotechnology can achieve in fighting these aggressive cancers. By combining this strategy with cancer cell-targeting materials, we should be able to develop a therapy for glioblastoma and other challenging cancers in the future."

To date, glioblastoma multiforme (GBM) has proven very resistant to treatments. One reason for this is that the tumour cells invade surrounding, healthy brain tissue, which makes the surgical removal of the tumour virtually impossible.

Used on their own, chemotherapy drugs can cause a dip in the rate at which the tumour spreads. In many cases, however, this is temporary, as the cell population then recovers.

"We need to be able to hit the cancer cells directly with more than one treatment at the same time" Dr Watts said. "This is important because some cancer cells are more resistant to one type of treatment than another. Nanotechnology provides the opportunity to give the cancer cells this 'double whammy' and open up new treatment options in the future."

In an effort to beat tumours more comprehensively, scientists have been researching ways in which gold nanoparticles might be used in treatments for some time. Gold is a benign material which in itself poses no threat to the patient, and the size and shape of the particles can be controlled very accurately.

When exposed to radiotherapy, the particles emit a type of low energy electron, known as Auger electrons, capable of damaging the diseased cell's DNA and other intracellular molecules. This low energy emission means that they only have an impact at short range, so they do not cause any serious damage to healthy cells that are nearby.

In the new study, the researchers first wrapped gold nanoparticles inside a positively charged polymer, polyethylenimine. This interacted with proteins on the cell surface called proteoglycans which led to the nanoparticles being ingested by the cell.

Once there, it was possible to excite it using standard radiotherapy, which many GBM patients undergo as a matter of course. This released the electrons to attack the cell DNA.

While gold nanospheres, without any accompanying drug, were found to cause significant cell damage, treatment-resistant cell populations did eventually recover several days after the radiotherapy. As a result, the researchers then engineered a second nanostructure which was suffused with cisplatin.

The chemotherapeutic effect of cisplatin combined with the radiosensitizing effect of gold nanoparticles resulted in enhanced synergy enabling a more effective cellular damage. Subsequent tests revealed that the treatment had reduced the visible cell population by a factor of 100 thousand, compared with an untreated cell culture, within the space of just 20 days. No population renewal was detected.

The researchers believe that similar models could eventually be used to treat other types of challenging cancers. First, however, the method itself needs to be turned into an applicable treatment for GBM patients. This process, which will be the focus of much of the group's forthcoming research, will necessarily involve extensive trials. Further work needs to be done, too, in determining how best to deliver the treatment and in other areas, such as modifying the size and surface chemistry of the nanomedicine so that the body can accommodate it safely.

Sonali Setua, a PhD student who worked on the project, said: "It was hugely satisfying to chase such a challenging goal and to be able to target and destroy these aggressive cancer cells. This finding has enormous potential to be tested in a clinical trial in the near future and developed into a novel treatment to overcome therapeutic resistance of glioblastoma."

Welland added that the significance of the group's results to date was partly due to the direct collaboration between nanoscientists and clinicians. "It made a huge difference, as by working with surgeons we were able to ensure that the nanoscience was clinically relevant," he said. "That optimises our chances of taking this beyond the lab stage, and actually having a clinical impact."


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons Licence. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sonali Setua, Myriam Ouberai, Sara G. Piccirillo, Colin Watts, Mark Welland. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale, 2014; DOI: 10.1039/c4nr03693j

Cite This Page:

University of Cambridge. "'Trojan horse' treatment could beat brain tumors." ScienceDaily. ScienceDaily, 12 August 2014. <www.sciencedaily.com/releases/2014/08/140812235749.htm>.
University of Cambridge. (2014, August 12). 'Trojan horse' treatment could beat brain tumors. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2014/08/140812235749.htm
University of Cambridge. "'Trojan horse' treatment could beat brain tumors." ScienceDaily. www.sciencedaily.com/releases/2014/08/140812235749.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins