Featured Research

from universities, journals, and other organizations

3-D microscope method to look inside brains

Date:
August 13, 2014
Source:
University of Utah
Summary:
A method for turning a small, $40 needle into a 3-D microscope capable of taking images up to 70 times smaller than the width of a human hair has been developed by scientists. the microscope technique works when an LED light is illuminated and guided through a fiberoptic needle or cannula. Returned pictures are reconstructed into 3-D images using algorithms.

University of Utah engineers have developed a new microscopy method that uses a fine needle or cannula and an LED light to make 3-D images. They hope this new microscope technology, shown here, can be implanted into the brains of mice to show images of cells.
Credit: Ganghun Kim, University of Utah

A University of Utah team discovered a method for turning a small, $40 needle into a 3-D microscope capable of taking images up to 70 times smaller than the width of a human hair. This new method not only produces high-quality images comparable to expensive microscopes, but may be implanted into the brains of living mice for imaging at the cellular level.

Related Articles


The study appears in the Aug. 18 issue of the journal Applied Physics Letters.

Designed by Rajesh Menon, an associate professor of electrical and computer engineering, and graduate student Ganghun Kim, the microscope technique works when an LED light is illuminated and guided through a fiberoptic needle or cannula. Returned pictures are reconstructed into 3-D images using algorithms developed by Menon and Kim.

"Unlike miniature microscopes, our approach does not use optics," Menon says. "It's primarily computational."

He says this approach will allow researchers not only to take images far smaller than those taken by current miniature microscopes, but do it for a fraction of the cost.

"We can get approximately 1-micron-resolution images that only $250,000 and higher microscopes are capable of generating," Menon says. "Miniature microscopes are limited to the few tens of microns."

Menon hopes to extend the technology in the future so it can see details down to submicron resolutions, compared with the current 1.4 microns. (A micron is a millionth of a meter. A human hair is about 100 microns wide.)

The microscope was originally designed for the lab of Nobel Prize-winning U human genetics professor, Mario R. Capecchi, whose team will use it to observe the brains of living mice to gain insight into how certain proteins in the brain react to various stimuli. Because the microscope can be assembled so inexpensively and easily go into hard-to-reach places, Menon and Kim expect many other uses for the device.

"This microscope will open up new avenues of research," Menon says. "Its low-cost, small-size, large field-of-view and implantable features will allow researchers to use this in fields ranging from biochemistry to mining."


Story Source:

The above story is based on materials provided by University of Utah. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ganghun Kim and Rajesh Menon. An ultra-small three dimensional computational microscope. Applied Physics Letters, August 2014 DOI: 10.1063/1.4892881

Cite This Page:

University of Utah. "3-D microscope method to look inside brains." ScienceDaily. ScienceDaily, 13 August 2014. <www.sciencedaily.com/releases/2014/08/140813130048.htm>.
University of Utah. (2014, August 13). 3-D microscope method to look inside brains. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2014/08/140813130048.htm
University of Utah. "3-D microscope method to look inside brains." ScienceDaily. www.sciencedaily.com/releases/2014/08/140813130048.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins