Featured Research

from universities, journals, and other organizations

On the edge of graphene: Edges have different conductivity

Date:
August 15, 2014
Source:
National Physical Laboratory
Summary:
The conductivity at the edges of graphene devices is different to that of the central material, researchers have discovered. Local scanning electrical techniques were used to examine the local nanoscale electronic properties of epitaxial graphene, in particular the differences between the edges and central parts of graphene Hall bar devices.

This image shows the differences along the edge of the graphene.
Credit: National Physical Laboratory

Researchers at the National Physical Laboratory (NPL) have discovered that the conductivity at the edges of graphene devices is different to that of the central material.

Related Articles


Local scanning electrical techniques were used to examine the local nanoscale electronic properties of epitaxial graphene, in particular the differences between the edges and central parts of graphene Hall bar devices. The research was published in Scientific Reports, an open access publication from Nature Publishing Group.

The researchers found that the central part of the graphene channel demonstrated electron conduction (n-doped), whereas the edges demonstrated hole conduction (p-doped). They were also able to precisely tune the conduction along the edges of the graphene devices using side-gates, without affecting the conductive properties at the centre.

At a smaller scale, these effects become more acute; when working at the submicron level, the altered properties may affect up to 25% of the material. Although both n- and p-type semiconductors conduct electricity, different types of conduction need to be acknowledged in the development of any devices. Graphene is increasingly used in the electronics industry and new devices will need to accommodate these differences.

The inversion effects were greatest just after the graphene had been cleaned, indicating that the carrier inversion was caused by defects at the channel edge introduced by the plasma etching process used to form the graphene devices. By contrast, a few hours after cleaning, the inversion effects were reduced as airborne molecules had adsorbed onto the uncoupled bonds at the edges of the graphene.

The results of this study are useful for developing graphene nanoribbon devices as well as for looking at edge photocurrents and the quantum Hall effect. The team is extending its work by investigating these effects in structurally different forms of graphene. In doing so, they will be able to compare different types of graphene and look more closely at the cause of these effects.


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Vishal Panchal, Arseniy Lartsev, Alessandra Manzin, Rositza Yakimova, Alexander Tzalenchuk, Olga Kazakova. Visualisation of edge effects in side-gated graphene nanodevices. Scientific Reports, 2014; 4 DOI: 10.1038/srep05881

Cite This Page:

National Physical Laboratory. "On the edge of graphene: Edges have different conductivity." ScienceDaily. ScienceDaily, 15 August 2014. <www.sciencedaily.com/releases/2014/08/140815102320.htm>.
National Physical Laboratory. (2014, August 15). On the edge of graphene: Edges have different conductivity. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2014/08/140815102320.htm
National Physical Laboratory. "On the edge of graphene: Edges have different conductivity." ScienceDaily. www.sciencedaily.com/releases/2014/08/140815102320.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins