Featured Research

from universities, journals, and other organizations

Using physics to design better drugs

Date:
August 19, 2014
Source:
Albert Einstein College of Medicine of Yeshiva University
Summary:
Researchers are working to develop drugs by considering the dynamics -- including specific atomic motions -- of the enzymes that those drugs target.

The National Institutes of Health (NIH) has awarded $9 million to renew a grant headed by Robert Callender, Ph.D., professor of biochemistry at Albert Einstein College of Medicine of Yeshiva University. He and his fellow researchers are working to develop drugs by considering the dynamics -- including specific atomic motions -- of the enzymes that those drugs target.

Enzymes are proteins that speed up, or catalyze, chemical reactions within cells. One-third of all drugs approved by the U.S. Food and Drug Administration act by inhibiting the enzymes of cells and viruses that cause disease. But so far, researchers have developed drugs against only a small fraction of potential enzyme targets. The ability to attack additional enzymes depends on gaining fundamental knowledge about enzyme function.

Enzymes and the molecules they interact with (their substrates) must have specific shapes for catalytic reactions to proceed. The proper shapes allow the part of an enzyme called the catalytic or "active" site to bind to the substrate, resulting in a new molecule called the product. It is now known that the enzyme-substrate molecule does not have just a single conformation to define its shape, as had been assumed, but rather a hierarchy of interconverting conformations. "To better understand these reactions at the molecular level, we need to learn more about the physics of the atomic motions that occur during catalysis," explained Dr. Callender. "That knowledge should lead to new classes of pharmaceuticals that can alleviate disease by the suitable targeting of enzymes."

The NIH grant funds four highly collaborative projects, two of them at Einstein. Dr. Callender, the grant's principal investigator, directs one of them, and the second is directed by Vern Schramm, Ph.D., professor and chair of biochemistry and the Ruth Merns Chair in Biochemistry. The other two projects are directed by R. Brian Dyer, Ph.D., at Emory University, and Steven Schwartz, Ph.D., now at the University of Arizona (formerly Einstein).

According to the conventional view, the three-dimensional structure of a protein's active site determines its function. The scientists funded by this grant have overturned this view of enzyme function by introducing the concept of atomic motion. They've shown that the active site's structure determines specific atomic motions that, in turn, determine enzyme function. This means that the binding of an enzyme to its substrate can result in hundreds of thousands of different enzyme-substrate conformations, or structural arrangements, just a few of which actually lead to the product. The scientists have also shown that specific types of atomic motion are important in forming an enzyme's transition state -- the brief (one-tenth of one-trillionth of a second) period in which a substrate is converted to a different chemical at an enzyme's active site. Dr. Schramm has pioneered efforts to synthesize transition-state analogs of substrates that bind to active sites of enzymes of interest and permanently "lock up" those enzymes.

The researchers plan to use the new knowledge regarding atomic motion to design new enzyme inhibitors that will function as drugs. In voting to renew the scientists' federal grant, the review panel called their research on atomic motion "groundbreaking" work that will "re-write the textbooks." The project may be the world's most advanced effort to understand the dynamics of enzyme-substrate interactions.

The grant, 2 P01GM068036-11, is titled "Protein Architecture and the Energy Landscape of Enzymatic Catalysis."


Story Source:

The above story is based on materials provided by Albert Einstein College of Medicine of Yeshiva University. Note: Materials may be edited for content and length.


Cite This Page:

Albert Einstein College of Medicine of Yeshiva University. "Using physics to design better drugs." ScienceDaily. ScienceDaily, 19 August 2014. <www.sciencedaily.com/releases/2014/08/140819112808.htm>.
Albert Einstein College of Medicine of Yeshiva University. (2014, August 19). Using physics to design better drugs. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/08/140819112808.htm
Albert Einstein College of Medicine of Yeshiva University. "Using physics to design better drugs." ScienceDaily. www.sciencedaily.com/releases/2014/08/140819112808.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins