Featured Research

from universities, journals, and other organizations

Insights into severe form of dwarfism

Date:
September 3, 2014
Source:
University of Texas Health Science Center at Houston
Summary:
A better understanding of the pathology of a severe form of dwarfism as well as a possible window of treatment have been discovered by researchers. Pseudoachondroplasia (PSACH) is a disorder that affects the cells in the growth plate, resulting in dwarfism, limb deformities, joint pain and early onset osteoarthritis. Children with PSACH show no signs of it at birth. Slowing of the long bone growth begins around age 2 and the cellular damage becomes extensive by age 4.

A better understanding of the pathology of a severe form of dwarfism as well as a possible window of treatment have been discovered by researchers at The University of Texas Health Science Center at Houston (UTHealth).

Related Articles


The preclinical research was published in a recent issue of the Journal of Bone and Mineral Research.

Pseudoachondroplasia (PSACH) is a disorder that affects the cells in the growth plate, resulting in dwarfism, limb deformities, joint pain and early onset osteoarthritis. Children with PSACH show no signs of it at birth. Slowing of the long bone growth begins around age 2 and the cellular damage becomes extensive by age 4. The disorder is caused by mutations in the cartilage oligomeric matrix protein (COMP) that is situated near cells known as chondrocytes, which play a key role in bone formation.

"By the time patients are in their late 20s, many have had both knees and hips replaced. They have severe joint pain and their mobility is very restricted," said first author Karen Posey, Ph.D., assistant professor of pediatrics at the UTHealth Medical School.

Previous studies of PSACH have been limited, relying on cultured PSACH cells or samples taken from human biopsies, and have not led to the development of feasible treatment options. Researchers recognized that they need a better method to study the disorder, which affects approximately 1 in 30,000 people.

"We generated a mouse with the human COMP gene that contains the most common mutation causing PSACH. Similar to how the disease manifests in humans, these genetically engineered mice appear normal at birth, but later show symptoms of PSACH, giving us a unique opportunity to potentially pinpoint when changes occur and when treatment may be most effective," Posey said.

The research team examined the mice at different stages of development to track the disorder's progression. They found that about two weeks after birth (which equates to about four years in humans), a large number of chondrocyte cells have died and symptoms worsen. They also found inflammation in the growth plate and cartilage of the joints, suggesting the beginning of osteoarthritis.

To determine if there was a way to reduce the effects of the disorder at its earliest stages, the researchers administered three different medications -- lithium, phenylbutyric acid and valproate. They found that the drugs successfully lessened the damage to chondrocyte cells in the growth plate, but each drug resulted in significant side effects. Nevertheless, the results were promising.

"Although these drugs in particular are not viable treatment options, our findings do provide a foundation for the development of a therapy that would reduce inflammation in the growth plate chondrocytes," Posey said. "We also identified an optimal treatment window -- starting around age 2, when most of the cells in the growth plates are still viable and widespread cell death has not yet occurred. Once growth plate chondrocytes have been depleted, generally around age 4, treatments likely would have little effect." Posey said they are now studying other medications.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at Houston. The original article was written by Deborah Mann Lake. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karen L Posey, Francoise Coustry, Alka C Veerisetty, Peiman Liu, Joseph L Alcorn, Jacqueline T Hecht. Chondrocyte-Specific Pathology During Skeletal Growth and Therapeutics in a Murine Model of Pseudoachondroplasia. Journal of Bone and Mineral Research, 2014; 29 (5): 1258 DOI: 10.1002/jbmr.2139

Cite This Page:

University of Texas Health Science Center at Houston. "Insights into severe form of dwarfism." ScienceDaily. ScienceDaily, 3 September 2014. <www.sciencedaily.com/releases/2014/09/140903121929.htm>.
University of Texas Health Science Center at Houston. (2014, September 3). Insights into severe form of dwarfism. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2014/09/140903121929.htm
University of Texas Health Science Center at Houston. "Insights into severe form of dwarfism." ScienceDaily. www.sciencedaily.com/releases/2014/09/140903121929.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins