Featured Research

from universities, journals, and other organizations

Study identifies gene network behind untreatable leukemia, possible treatment target

Date:
September 4, 2014
Source:
Cincinnati Children's Hospital Medical Center
Summary:
Researchers have identified a genetic/molecular network that fuels a high-risk and aggressive form of acute myeloid leukemia and its precursor disease myelodysplastic syndrome -- providing a possible therapeutic strategy for an essentially untreatable form of the blood cancer.

Researchers have identified a genetic/molecular network that fuels a high-risk and aggressive form of Acute Myeloid Leukemia (AML) and its precursor disease Myelodysplastic Syndrome (MDS) -- providing a possible therapeutic strategy for an essentially untreatable form of the blood cancer.

Scientists from the Cancer and Blood Diseases Institute (CBDI) at Cincinnati Children's Hospital Medical Center report their results in a study posted online Sept. 4 by Cell Reports.

The specific forms of AML and MDS in the current study involve deletions on the arm of a specific chromosome in blood cells (del(5q). In patients with less aggressive forms of del(5q) MDS, the percentage of bone marrow blasts in their blood (the earliest, most immature cells of the myeloid cell line) is less than 5 percent. This means treatment prognosis for those patients typically is good, according to the study's lead investigator, Daniel Starczynowski PhD, a researcher in the division of Experimental Hematology and Cancer Biology, part of the CBDI at Cincinnati Children's.

"Unfortunately, a large portion of del(5q) AML and MDS patients have increased number of bone marrow blasts and additional chromosomal mutations," Starczynowski said. "These patients have very poor prognosis because the disease is very resistant to available treatments such as chemotherapy and radiation. Finding new therapies is important and this study identifies new therapeutic possibilities."

The researchers conducted their study in human AML/MDS cells and mouse models of del(5q) AML/MDS. They found that reduced expression of a certain gene in blood cells (miR-146a) led to activation of a molecular signaling network involving several components of NF-kB, one of which involved a protein called p62 -- a critical regulator of cell metabolism, cellular remodeling and certain cancers.

Deletion of the miR-146a gene led to overexpression of p62, which caused sustained activation of what researchers identified as an NF-kB signaling network. This fueled the survival and aggressive growth of leukemic cells in cells and in mouse models.

Earlier attempts in previous studies to directly inhibit NF-kB (a key molecular facilitator to the leukemic process) have not proven successful, according to investigators on the current paper. So the authors performed follow-up laboratory tests to look for possible vulnerabilities to NF-kB and a potential workaround by targeting instead p62 within the NF-kB signaling network.

The researcher next tested inhibiting/knocking down p62 as an experimental treatment strategy in mouse models of leukemia and in human cells. The authors reported that targeting p62 prevented expansion of leukemic cells in mouse models and reduced the number of leukemia cell colonies by 80 percent in human AML/MDS cells.

Starczynowski stressed that significant additional research is needed to further verify the findings and learn more about the molecular processes involved. He also cautioned that laboratory results in mouse models do not necessarily translate to humans, and it isn't known at this time how the findings might be directly applicable to clinical treatment.


Story Source:

The above story is based on materials provided by Cincinnati Children's Hospital Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Starczynowski PhD et al. Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network. Cell Reports, September 2014 DOI: 10.1016/j.celrep.2014.07.062

Cite This Page:

Cincinnati Children's Hospital Medical Center. "Study identifies gene network behind untreatable leukemia, possible treatment target." ScienceDaily. ScienceDaily, 4 September 2014. <www.sciencedaily.com/releases/2014/09/140904131603.htm>.
Cincinnati Children's Hospital Medical Center. (2014, September 4). Study identifies gene network behind untreatable leukemia, possible treatment target. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2014/09/140904131603.htm
Cincinnati Children's Hospital Medical Center. "Study identifies gene network behind untreatable leukemia, possible treatment target." ScienceDaily. www.sciencedaily.com/releases/2014/09/140904131603.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins