New! Sign up for our free email newsletter.
Science News
from research organizations

Researchers discover a genetic mutation that prevents diabetes complications

Date:
February 10, 2016
Source:
University of Helsinki
Summary:
A number of complications are associated with diabetes, but they are more prevalent in some patients than in others. A new study has now revealed two genetic mutations which seem to lower the risk of contracting a diabetic retinal or kidney disease.
Share:
FULL STORY

The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.

The biggest risk factor associated with damage to the tiny blood vessels is high blood sugar, although genetic factors are also at play. Experiments conducted on both individual cells and laboratory animals indicate that the presence of vitamin B1 inside the cell can prevent the damage caused by high blood sugar.

Together with Professor Massimo Porta from the University of Turin, Italy, Professor Per-Henrik Groop, Principal Investigator of the FinnDiane research project at the University of Helsinki and Folkhälsan Research Centre, Finland, and his research group have studied the impact of point mutations on the genes that encode the proteins which transfer vitamin B1 into cells. The research was based on the hypothesis that the studied mutations impact the individual's capacity to transfer vitamin B1 into cells and consequently the susceptibility for additional complications associated with diabetes.

The research used the world's most extensive research data set of type 1 diabetes patients, compiled by Groop's group, in which the patients are characterised based on their genetic profile and the severity of their diabetes complications.

The results showed that two of the studied point mutations in the SLC19A3 gene were strongly associated with both retinopathy and the combination of retinopathy and nephropathy; thus, carriers of the genetic variant were less likely to have these complications. The protective effect of the variant remained significant even when other common risk factors were taken into account.

The study was repeated on North American patient data, and the results confirmed that the two variants protect their carriers from the combination of retinopathy and nephropathy.

"Based on these results, it seems that the SLC19A3 gene has a role in the development of diabetic nephropathy and diabetic retinopathy. The results also help explain why some patients with type 1 diabetes are more likely to develop complications than others," says Iiro Toppila, the researcher responsible for analysing the data. "However, further research is needed into the biological effects of point mutations."


Story Source:

Materials provided by University of Helsinki. Note: Content may be edited for style and length.


Journal Reference:

  1. Massimo Porta, Iiro Toppila, Niina Sandholm, S. Mohsen Hosseini, Carol Forsblom, Kustaa Hietala, Lorenzo Borio, Valma Harjutsalo, Barbara E. Klein, Ronald Klein, Andrew D. Paterson, Per-Henrik Groop. Variation inSLC19A3and Protection from Microvascular Damage in Type 1 Diabetes. Diabetes, 2015; db151247 DOI: 10.2337/db15-1247

Cite This Page:

University of Helsinki. "Researchers discover a genetic mutation that prevents diabetes complications." ScienceDaily. ScienceDaily, 10 February 2016. <www.sciencedaily.com/releases/2016/02/160210110800.htm>.
University of Helsinki. (2016, February 10). Researchers discover a genetic mutation that prevents diabetes complications. ScienceDaily. Retrieved April 26, 2024 from www.sciencedaily.com/releases/2016/02/160210110800.htm
University of Helsinki. "Researchers discover a genetic mutation that prevents diabetes complications." ScienceDaily. www.sciencedaily.com/releases/2016/02/160210110800.htm (accessed April 26, 2024).

Explore More

from ScienceDaily

RELATED STORIES