New! Sign up for our free email newsletter.
Science News
from research organizations

Electrons caught in the act

January 21, 2021
University of Tsukuba
Scientists create movies of the ultrafast motion of electrons traveling through an organic semiconductor with atomic-level resolution. This work may lead to more powerful and miniaturized smart devices.

A team of researchers from the Faculty of Pure and Applied Sciences at the University of Tsukuba filmed the ultrafast motion of electrons with sub-nanoscale spatial resolution. This work provides a powerful tool for studying the operation of semiconductor devices, which can lead to more efficient electronic devices.

The ability to construct ever smaller and faster smartphones and computer chips depends on the ability of semiconductor manufacturers to understand how the electrons that carry information are affected by defects. However, these motions occur on the scale of trillionths of a second, and they can only be seen with a microscope that can image individual atoms. It may seem like an impossible task, but this is exactly what a team of scientists at the University of Tsukuba was able to accomplish.

The experimental system consisted of Buckminsterfullerene carbon molecules -- which bear an uncanny resemblance to stitched soccer balls -- arranged in a multilayer structure on a gold substrate. First, a scanning tunneling microscope was set up to capture the movies. To observe the motion of electrons, an infrared electromagnetic pump pulse was applied to inject electrons into the sample. Then, after a set time delay, a single ultrafast terahertz pulse was used to probe the location of the elections. Increasing the time delay allowed the next "frame" of the movie to be captured. This novel combination of scanning tunneling microscopy and ultrafast pulses allowed the team to achieve sub-nanoscale spatial resolution and near picosecond time resolution for the first time. "Using our method, we were able to clearly see the effects of imperfections, such as a molecular vacancy or orientational disorder," explains first author Professor Shoji Yoshida. Capturing each frame took only about two minutes, which allows the results to be reproducible. This also makes the approach more practical as a tool for the semiconductor industry.

"We expect that this technology will help lead the way towards the next generation of organic electronics" senior author Professor Hidemi Shigekawa says. By understanding the effects of imperfections, some vacancies, impurities, or structural defects can be purposely introduced into devices to control their function.

Story Source:

Materials provided by University of Tsukuba. Note: Content may be edited for style and length.

Journal Reference:

  1. Shoji Yoshida, Yusuke Arashida, Hideki Hirori, Takehiro Tachizaki, Atsushi Taninaka, Hiroki Ueno, Osamu Takeuchi, Hidemi Shigekawa. Terahertz Scanning Tunneling Microscopy for Visualizing Ultrafast Electron Motion in Nanoscale Potential Variations. ACS Photonics, 2021; 8 (1): 315 DOI: 10.1021/acsphotonics.0c01572

Cite This Page:

University of Tsukuba. "Electrons caught in the act." ScienceDaily. ScienceDaily, 21 January 2021. <>.
University of Tsukuba. (2021, January 21). Electrons caught in the act. ScienceDaily. Retrieved June 16, 2024 from
University of Tsukuba. "Electrons caught in the act." ScienceDaily. (accessed June 16, 2024).

Explore More

from ScienceDaily