New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Blue Gene

Blue Gene is a computer architecture project designed to produce several next-generation supercomputers, designed to reach operating speeds in the petaflops range, and currently reaching sustained speeds over 360 teraflops. It is a cooperative project among IBM (particularly the Thomas J. Watson Research Center), the Lawrence Livermore National Laboratory, the United States Department of Energy (which is partially funding the project), and academia. There are four Blue Gene projects in development: BlueGene/L, BlueGene/C, BlueGene/P, and BlueGene/Q.

On June 26, 2007, IBM unveiled Blue Gene/P, the second generation of the Blue Gene supercomputer. Designed to run continuously at one petaflops, it can be configured to reach speeds in excess of three petaflops. Furthermore, it is at least seven times more energy efficient than any other supercomputer, accomplished by using many small, low-power chips connected through five specialized networks.

Related Stories
 


Computers & Math News

January 17, 2026

Engineers have created a device that generates incredibly tiny, earthquake-like vibrations on a microchip—and it could transform future electronics. Using a new kind of “phonon laser,” the team ...
Researchers have turned artificial intelligence into a powerful new lens for understanding why cancer survival rates differ so dramatically around the world. By analyzing cancer data and health system information from 185 countries, the AI model ...
Humans pay enormous attention to lips during conversation, and robots have struggled badly to keep up. A new robot developed at Columbia Engineering learned realistic lip movements by watching its own reflection and studying human videos online. ...
A new OLED design can stretch dramatically while staying bright, solving a problem that has long limited flexible displays. The breakthrough comes from pairing a highly efficient light-emitting material with tough, transparent MXene-based ...
Foams were once thought to behave like glass, with bubbles frozen in place at the microscopic level. But new simulations reveal that foam bubbles are always shifting, even while the foam keeps its overall shape. Remarkably, this restless motion ...
A generative AI system can now analyze blood cells with greater accuracy and confidence than human experts, detecting subtle signs of diseases like leukemia. It not only spots rare abnormalities but also recognizes its own uncertainty, making it a ...
Scientists have unveiled a new way to capture ultra-sharp optical images without lenses or painstaking alignment. The approach uses multiple sensors to collect raw light patterns independently, then synchronizes them later using computation. This ...
Stanford researchers have developed an AI that can predict future disease risk using data from just one night of sleep. The system analyzes detailed physiological signals, looking for hidden patterns across the brain, heart, and breathing. It ...
Researchers have built a new platform that produces ultrashort UV-C laser pulses and detects them at room temperature using atom-thin materials. The light flashes last just femtoseconds and can be ...
Scientists are learning to engineer light in rich, multidimensional ways that dramatically increase how much information a single photon can carry. This leap could make quantum communication more secure, quantum computers more efficient, and sensors ...
Researchers have created microscopic robots so small they’re barely visible, yet smart enough to sense, decide, and move completely on their own. Powered by light and equipped with tiny computers, the robots swim by manipulating electric fields ...
A new chip-based quantum memory uses nanoprinted “light cages” to trap light inside atomic vapor, enabling fast, reliable storage of quantum information. The structures can be fabricated with extreme precision and filled with atoms in days ...

Latest Headlines

updated 12:56 pm ET