New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Deep brain stimulation

Deep brain stimulation (DBS) is one of a group of treatments involving surgical implantation of a medical device called a brain pacemaker, which sends electrical impulses to specific parts of the brain. DBS was approved by the Food and Drug Administration (FDA) in 1997 as a treatment for essential tremor and in April 2003 as a treatment for dystonia. The FDA approved DBS for Parkinson's disease in 2002. DBS may also alleviate symptoms in treatment-resistant clinical depression, and has been used experimentally in the treatment of other conditions. While DBS is helpful for some patients, there is potential for serious complications and side effects.

The deep brain stimulation system consists of three components: the implanted pulse generator (IPG), the lead, and the extension. The IPG is a battery powered neurostimulator encased in a titanium housing, which sends electrical pulses to the brain to interfere with neural activity at the target site. The lead is a coiled wire insulated in polyurethane with four platinum iridium electrodes and is placed in one of three areas of the brain. The lead is connected to the IPG by the extension, an insulated wire that runs from the head, down the side of the neck, behind the ear to the IPG, which is placed subcutaneously below the clavicle or in some cases, the abdomen. The IPG can be calibrated by a neurologist, nurse or trained technician to optimize symptom suppression and control side effects.

DBS leads are placed in the brain according to the type of symptoms to be addressed. For essential tremor and Parkinsonian tremors, the lead is placed in the thalamus. For dystonia and symptoms associated with Parkinson's disease (rigidity, bradykinesia/akinesia and tremor), the lead may be placed in either the globus pallidus or subthalamic nucleus.

Related Stories
 


Mind & Brain News

December 28, 2025

Tiny lab-grown brains are offering an unprecedented look at how schizophrenia and bipolar disorder disrupt neural activity. Researchers found distinct electrical firing patterns that could identify ...
Weight loss restored healthy metabolism in both young and mid-aged mice, but the brain told a different story. In mid-aged animals, slimming down actually worsened inflammation in a brain region tied to appetite and energy balance. While this ...
A major new review has put hundreds of alternative autism treatments under the microscope—and most didn’t hold up. Scientists analyzed decades of research and found little reliable evidence that popular approaches like probiotics, acupuncture, ...
A new study suggests temporal lobe epilepsy may be linked to early aging of certain brain cells. When researchers removed these aging cells in mice, seizures dropped, memory improved, and some animals avoided epilepsy altogether. The treatment used ...
A new study suggests that dementia may be driven in part by faulty blood flow in the brain. Researchers found that losing a key lipid causes blood vessels to become overactive, disrupting circulation and starving brain tissue. When the missing ...
Alzheimer’s has long been considered irreversible, but new research challenges that assumption. Scientists discovered that severe drops in the brain’s energy supply help drive the disease—and restoring that balance can reverse damage, even in ...
MIT scientists have achieved the first-ever lab synthesis of verticillin A, a complex fungal compound discovered in 1970. Its delicate structure stalled chemists for decades, despite differing from related molecules by only two atoms. With the ...
New research suggests Alzheimer’s may start far earlier than previously thought, driven by a hidden toxic protein in the brain. Scientists found that an experimental drug, NU-9, blocks this early damage in mice and reduces inflammation linked to ...
A new study shows dopamine isn’t the brain’s movement “gas pedal” after all. Instead of setting speed or strength, it quietly enables movement in the background, much like oil in an engine. When scientists manipulated dopamine during ...
Eating full-fat cheese and cream may be associated with a lower risk of dementia, according to a large study that tracked people for more than 25 years. Those who consumed higher amounts of these foods developed dementia less often than those who ...
Researchers have revealed that so-called “junk DNA” contains powerful switches that help control brain cells linked to Alzheimer’s disease. By experimentally testing nearly 1,000 DNA switches ...
Spending a few hours a week helping others may slow the aging of the brain. Researchers found that both formal volunteering and informal acts, like helping neighbors or relatives, were linked to noticeably slower cognitive decline over time. The ...

Latest Headlines

updated 12:56 pm ET