Featured Research

from universities, journals, and other organizations

New Form Of Gene Therapy Holds Promise For The Future

Date:
October 25, 1997
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Scientists at UT Southwestern Medical Center at Dallas are one step closer to producing a "drug" that is internally regulated and activated only when needed.

DALLAS - October 23, 1997 - Scientists at UT Southwestern Medical Center at Dallas are one step closer to producing a "drug" that is internally regulated and activated only when needed.

They have developed a system in mice in which the level of a genetically engineered protein responds to inflammatory signals produced by the mice themselves. This method of gene therapy, described in the October issue of Nature Biotechnology, may have great potential for treating chronic relapsing and remitting inflammatory diseases, such as rheumatoid arthritis, and organ transplant rejection.

"Our long-range goal is to give patients the right amount of an anti-inflammatory protein, at the right time and in the right place, to control damaging inflammation by introducing the gene for the protein and allowing the body's own signals to control its production," said Dr. Robert Munford, professor of internal medicine and microbiology and holder of the Jan and Henri Bromberg Chair in Internal Medicine.

According to Munford, who worked with Dr. Alan Varley, a research fellow in internal medicine, and research technician Steven Geiszler, "There are lots of hurdles to overcome, but Varley and Geiszler seem to have jumped the first one, showing that recombinant genes can actually be regulated in animals in response to inflammation."

The investigators used a "reporter" gene - a gene that encodes an easily measured protein - to test the ability of a mouse's immune response to turn on that gene. The reporter gene they used was firefly luciferase, an enzyme that causes light emission and can be measured easily with a luminometer. In the laboratory, they inserted the luciferase gene into a genetically altered virus that could not reproduce. To stimulate and control the production of luciferase, the researchers inserted specific short pieces of deoxyribonucleic acid (DNA) in front of the luciferase gene. These short DNA elements respond to internal signals by turning genes on and off.

The trick was to find the right combination of DNA elements to dramatically enhance production of luciferase in response to an inflammatory reaction.

The successful combination consisted of three elements ? one from the mouse and two from a virus ? that worked in concert and greatly amplified the production of luciferase when the proper signals (in this case, an inflammatory reaction) were received.

The luciferase gene preceded by the three short pieces of DNA was genetically inserted into the viral molecule and injected into mice. Researchers then induced two different types of inflammatory responses. They determined how successful their combination of elements was by measuring the amount of luciferase produced in the mouse's liver, spleen, lung, heart and kidney.

If a gene for an anti-inflammatory protein is used in place of the luciferase gene, this type of gene therapy, in theory, would activate that protein in response to the body's own inflammatory signals.

"The production level of the anti-inflammatory protein should reflect the intensity and duration of the inflammatory condition," said Munford. "If the gene can be delivered to a specific site, such as an inflamed joint or an organ about to be transplanted into a recipient, it may be possible to provide effective anti-inflammatory treatment while avoiding systemic immunosuppression with its risk of infection."

Dr. Richard Gaynor, professor of internal medicine and microbiology, and holder of the Andrea L. Simmons Distinguished Chair in Cancer Virology, also collaborated in the studies.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "New Form Of Gene Therapy Holds Promise For The Future." ScienceDaily. ScienceDaily, 25 October 1997. <www.sciencedaily.com/releases/1997/10/971025092355.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1997, October 25). New Form Of Gene Therapy Holds Promise For The Future. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1997/10/971025092355.htm
University Of Texas Southwestern Medical Center At Dallas. "New Form Of Gene Therapy Holds Promise For The Future." ScienceDaily. www.sciencedaily.com/releases/1997/10/971025092355.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins