New! Sign up for our free email newsletter.
Science News
from research organizations

New Analysis Shows Earth's Lower Stratosphere In Synch With Solar Cycle

Date:
February 13, 1998
Source:
National Center For Atmospheric Research
Summary:
The sun's 11-year solar cycle may be the driving force behind periodic changes in temperatures and pressure heights of earth's lower stratosphere from pole to pole, according to new research by Harry van Loon of the National Center for Atmospheric Research and Karin Labitzke of the Free University of Berlin.
Share:
FULL STORY

BOULDER--The sun's 11-year solar cycle may be the driving force behind periodic changes in temperatures and pressure heights of the earth's lower stratosphere from pole to pole, according to a new analysis presented Saturday at the annual meeting of the American Association for the Advancement of Science in Philadelphia.

Harry van Loon, a scientist at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, and Karin Labitzke of the Free University of Berlin (FUB) had previously found that a 10- to 12-year oscillation in the stratosphere of the Northern Hemisphere corresponded to four 11-year solar cycles, beginning in 1958. Now, with the help of a vast data reanalysis conducted by NCAR and the National Centers for Environmental Prediction, the two researchers have revealed a mirror image of the solar-stratosphere correlation in the Southern Hemisphere, spanning three solar cycles from 1968 to 1996. NCAR's primary sponsor is the National Science Foundation.

Solar activity cycles from one minimum to the next about every 11 years. During the intervening maximum, explosive activity on the sun intensifies, radiative output increases, and more sunspots are visible on the solar surface. As the measure of this cycle, van Loon and Labitzke used the flux in the 10.7-centimeter radio waveband, an objectively observed quantity highly correlated with the 11-year cycle. They compared these radio data with FUB's daily analyses of the stratosphere. The results show a strong correlation between the solar cycle and the 10- to 12-year oscillation of the lower stratosphere's mean temperatures and constant pressure heights above sea level.

"The emergence of a correlation in the Southern Hemisphere similar to that in the Northern Hemisphere has increased our confidence that the solar-stratospheric relationship is more than a statistical coincidence," says van Loon.

For many years scientists have tried to find an earthly link to the sun's 11-year cycle. Previous attempts have turned up humorous correspondences to the number of Republicans in the House of Representatives and the length of women's skirts. Until van Loon and Labitzke's research on the stratosphere, even serious scientific stabs at the problem eventually proved false. A solid link takes on added significance now as scientists search for a clear sun-earth connection for computer models used to predict climate change.

"The role of the sun in climate change is still an unsolved problem," says van Loon. "Any relationship between changes in solar output and what happens here on earth is important for understanding long-term climate."

The sun's output has varied about 0.1% over one solar cycle during the past several decades. Over centuries, however, larger variations may occur. For example, an extended quiet period on the sun may have chilled the earth during the Little Ice Age between the mid-1550s and mid-1800s. During the long, severe winters and short, wet summers of that period, alpine glaciers advanced down river canyons, Dutch canals froze over, and farming became difficult farther north.

Van Loon and Labitzke found that the highest correlations of the stratosphere's pressure heights with the solar cycle are concentrated in two well-defined latitude zones, which move from lower latitudes in winter to higher latitudes in summer, thus tracking the sun's interseasonal journey.

The annual mean temperatures of the lower stratosphere are well correlated with the solar cycle in the summer of either hemisphere, but only weakly correlated in winter. That is, during the summer months in either hemisphere, the average temperatures of the lower stratosphere rise and fall with the waxing and waning of the sun's energy output over its 11-year cycle.

NCAR is managed by the University Corporation for Atmospheric Research (UCAR). UCAR is a consortium of more than 60 universities offering Ph.D.s in the atmospheric or related sciences.

-The End-

Find this news release on the World Wide Web athttp://www.ucar.edu/publications/newsreleases/1998/suncycle.html

To receive UCAR and NCAR press releases by e-mail,telephone 303-497-8601 or e-mail butterwo@ucar.edu


Story Source:

Materials provided by National Center For Atmospheric Research. Note: Content may be edited for style and length.


Cite This Page:

National Center For Atmospheric Research. "New Analysis Shows Earth's Lower Stratosphere In Synch With Solar Cycle." ScienceDaily. ScienceDaily, 13 February 1998. <www.sciencedaily.com/releases/1998/02/980212184713.htm>.
National Center For Atmospheric Research. (1998, February 13). New Analysis Shows Earth's Lower Stratosphere In Synch With Solar Cycle. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/1998/02/980212184713.htm
National Center For Atmospheric Research. "New Analysis Shows Earth's Lower Stratosphere In Synch With Solar Cycle." ScienceDaily. www.sciencedaily.com/releases/1998/02/980212184713.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES