Featured Research

from universities, journals, and other organizations

Drunken Fruit Flies Reveal Molecular Pathway Regulating Sensitivity To Alcohol

Date:
June 17, 1998
Source:
University Of California, San Francisco
Summary:
Researchers at UC San Francisco have identified a molecular pathway in intoxicated fruit flies that is responsible for regulating the flies' meandering, wobbling responses to alcohol. And in the details of the findings, the investigators said, there is evidence of a similar pathway in humans.

Researchers at UC San Francisco have identified a molecular pathway in intoxicated fruit flies that is responsible for regulating the flies' meandering, wobbling responses to alcohol. And in the details of the findings, the investigators said, there is evidence of a similar pathway in humans.

Related Articles


The study, reported in the June 12 issue of Cell, and praised in an accompanying review by Howard Hughes Medical Institute Investigator Hugo J. Bellen, DVM, PhD, "lays the foundation for a genetic approach to dissecting the acute, and possibly the chronic, effects of alcohol," said Bellen, and "should increase our understanding of the molecular mechanisms causing drug abuse and addiction in the near future."

The finding, which sheds light on how fruit flies become drunk, aims to address in the future what makes some people more apt to become alcoholics. Previous studies have determined that people who are less sensitive to alcohol's impact are at greater risk for becoming alcoholics, and that the degree of sensitivity to alcohol is genetically influenced. Young men with a family history of alcoholism, for instance, are less sensitive to alcohol than those from families without alcoholism. But researchers have been unable to determine the biological explanation for the relationship between a sensitivity to alcohol and a risk for alcoholism.

In the fruit fly, or Drosophila (Dra-SOPH-i-la), study, led by Ulrike Heberlein, PhD, an assistant professor of neurology at UCSF and an investigator in the Ernest Gallo Clinic and Research Center at the UCSF-affiliated San Francisco General Hospital, the researchers sought to determine what molecular factors influence a fruit fly's sensitivity to alcohol. They set about this challenge by "knocking out," or removing, different genes from the fruit flies and then exposing the animals to alcohol as a way of revealing the role the missing genes would normally play.

When they knocked out a gene known as amnesiac, the flies became more sensitive, or more inebriated, than their brethren. More importantly, however, when the researchers examined how the amnesiac gene normally functions within the fruit fly's neural system, they determined that it regulates the cyclic AMP (cAMP) pathway, a signal transduction cascade that scientists at the Gallo Center have long known was affected by alcohol through studies in human cells. This discovery fit with a previous finding, namely that amnesiac is believed to encode a molecule that stimulates cAMP production.

The scientists thus deduced that the fruit flies missing the amnesiac gene had reduced cAMP production, and that this action caused greater intoxication. To test their hypothesis, they treated the mutant amnesiac flies with agents that increased cAMP levels and were able to reverse the alcohol sensitivity. The finding made a giant leap from an isolated gene in fruit flies to an entire molecular pathway previously observed in animal and human cell cultures.

"This was an exciting discovery," said Heberlein. "We've known cAMP was involved in the brain's response to alcohol, but we haven't known what role it plays in causing the behavioral effects associated with intoxication. Our study demonstrates that proper regulation of the cAMP signaling pathway is central to establishing ethanol sensitivity in Drosophila."

The finding does not suggest that the amnesiac mutation exists in humans, nor that any one gene affects sensitivity to alcohol in higher animals. The significance, said Heberlein "is that we have found a pathway that modulates the response to alcohol."

"Our next step, she said, "is to identify more genes in fruit flies associated with alcohol behaviors and to see if we can find homologous, or similarly acting, genes in higher organisms, including mice and humans." Ultimately, of course, if these genes do exist in humans the researchers hope to find that they are linked to alcoholic behaviors.

Given how strikingly similar the fruit flies' behavioral response to alcohol is to the human response, said Heberlein, this may well happen, for the similarity indicates that the genes that regulate these behaviors have not changed significantly in the evolutionary process, suggesting a common molecular pathway may be in place.

The UCSF laboratory, part of UCSF's new Neurobiology of Addiction Center, which includes the Gallo Center, is the only institute in the world using Drosophila as a system for studying the genetics of alcoholism. The UCSF study was funded by grants from National Institute on Alcohol Abuse and Alcoholism (NIAAA), the Alcoholic Beverage Medical Research Foundation and the March of Dimes Birth Defects Foundation.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "Drunken Fruit Flies Reveal Molecular Pathway Regulating Sensitivity To Alcohol." ScienceDaily. ScienceDaily, 17 June 1998. <www.sciencedaily.com/releases/1998/06/980617070622.htm>.
University Of California, San Francisco. (1998, June 17). Drunken Fruit Flies Reveal Molecular Pathway Regulating Sensitivity To Alcohol. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/1998/06/980617070622.htm
University Of California, San Francisco. "Drunken Fruit Flies Reveal Molecular Pathway Regulating Sensitivity To Alcohol." ScienceDaily. www.sciencedaily.com/releases/1998/06/980617070622.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins