Featured Research

from universities, journals, and other organizations

Breakthrough In Understanding The Biology Of Fat -- UCSF/Gladstone Scientists Discover Gene For Key Enzyme

Date:
October 28, 1998
Source:
University Of California, San Francisco
Summary:
Not only do Americans consume a lot of fat, they are consumed by how to control it. Now a research team led by scientists at the Gladstone Institute of Cardiovascular Disease and the University of California San Francisco has discovered a major piece in the puzzle of how our bodies build and regulate fat.

Not only do Americans consume a lot of fat, they are consumed by how to control it.

Now a research team led by scientists at the Gladstone Institute of Cardiovascular Disease and the University of California San Francisco has discovered a major piece in the puzzle of how our bodies build and regulate fat.

The researchers have found a gene that encodes DGAT, a key enzyme in fat production. Their study results are published today (October 27) in The Proceedings of the National Academy of Sciences USA.

Known officially as acyl CoA:diacylglycerol acyltransferase, the DGAT enzyme joins other smaller molecules to produce, or synthesize, a specific group of fats called triglycerides. Triglycerides are one of the major lipids (fats) found in the bloodstream, and they constitute more than 95 percent of the fat stored in the adipose (fat) tissue of mammals, thereby serving as the major source of stored energy.

"This finding has implications for many aspects of biology," said Robert V. Farese, Jr., MD, Gladstone scientist and UCSF assistant professor of medicine, who is principal investigator of the study. "Identifying a gene encoding DGAT gives us a valuable tool to evaluate this enzyme and to explore triglyceride synthesis as it relates to human energy cycles, obesity, and cardiovascular disease. The finding also may have implications for potential development of drug therapies aimed at lowering triglyceride levels or treating obesity."

Because of its role in fat synthesis and energy storage, DGAT is thought to be a major player in the absorption of fats in the intestine, regulation of triglyceride concentrations in blood plasma, fat storage in fat cells, energy metabolism in muscle cells, and triglyceride synthesis involved in milk and egg production, according to Farese.

"In future research efforts we want to focus on determining the role that DGAT plays in these processes in mammals," he said.

DGAT also plays an important role in the synthesis of seed oils, such as canola oil, in plants, so a greater understanding of the enzyme has potential implications in agricultural science, he added.

Although scientists have known that this important enzyme existed for several decades, DGAT proved difficult to isolate in its pure form because it is a protein that normally is associated with membranes and resists being pulled away from the lipid-rich membrane environment, Farese said.

He and his colleagues took advantage of computer-based searching to "find" DGAT. The team used the known DNA sequence of a related enzyme--called ACAT--involved in cholesterol metabolism to screen computer databases containing snippets of human and mouse genes.

"Serendipitously, we found a "hit" for a sequence from a gene that appeared to be a "cousin" of the ACAT gene. Then our group, led by Sylvaine Cases, PhD, went on to isolate the whole gene for this sequence from mouse tissue and to determine that it coded for a DGAT enzyme," Farese said.

The researchers also were able to use the newly discovered DNA sequence to learn about DGAT. For example, they found large amounts of DGAT gene expression in the intestine and in fat tissue--indicating that these mouse tissues are where significant amounts of DGAT are made. "These sites are consistent with a role for DGAT in fat metabolism," said Cases, a postdoctoral fellow who is first author of the study.

In addition to Farese and Cases, study co-investigators are postdoctoral fellows Steven Smith, PhD, and Sabine Novak, PhD, and research associates Heather Myers and Eric Sande, all of the Gladstone Institute of Cardiovascular Disease; Yao-Wu Zheng, PhD, of the UCSF Cardiovascular Research Institute; Sandra Erickson, PhD, and Steven Lear of the San Francisco Veterans Affairs Medical Center; Colin Collins of the Lawrence Berkeley National Laboratory; and Carrie Welch, PhD, and Aldons Lusis, PhD, of UCLA.

The research was supported by the J. David Gladstone Institutes, National Institutes of Health, American Heart Association, and Department of Veterans Affairs.

The Gladstone Institute of Cardiovascular Disease focuses on the study of cholesterol and lipid metabolism and their impacts on cardiovascular disease.

The Institute is one of three that make up the J. David Gladstone Institutes, a private biomedical research institute affiliated with UCSF and named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflects his long-standing personal interest in medical education.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "Breakthrough In Understanding The Biology Of Fat -- UCSF/Gladstone Scientists Discover Gene For Key Enzyme." ScienceDaily. ScienceDaily, 28 October 1998. <www.sciencedaily.com/releases/1998/10/981028080702.htm>.
University Of California, San Francisco. (1998, October 28). Breakthrough In Understanding The Biology Of Fat -- UCSF/Gladstone Scientists Discover Gene For Key Enzyme. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1998/10/981028080702.htm
University Of California, San Francisco. "Breakthrough In Understanding The Biology Of Fat -- UCSF/Gladstone Scientists Discover Gene For Key Enzyme." ScienceDaily. www.sciencedaily.com/releases/1998/10/981028080702.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins