Featured Research

from universities, journals, and other organizations

Scientists Use Bioengineering To Buy Time For Ailing Hearts

Date:
February 2, 1999
Source:
The Hospital For Sick Children
Summary:
Researchers at The Hospital for Sick Children (HSC) have successfully used biological engineering to prevent the closing of a key passage between the two large blood vessels leading out of the heart to the body and lungs. The passage, called the ductus arteriosis, normally closes shortly after birth, but the survival of newborns with severe heart defects depends on the ductus remaining open, at least until corrective surgery can be carried out.

TORONTO -- Researchers at The Hospital for Sick Children (HSC) have successfully used biological engineering to prevent the closing of a key passage between the two large blood vessels leading out of the heart to the body and lungs. The passage, called the ductus arteriosis, normally closes shortly after birth, but the survival of newborns with severe heart defects depends on the ductus remaining open, at least until corrective surgery can be carried out.

Related Articles


Dr. Marlene Rabinovitch, HSC's head of Cardiovascular Research, holder of the Heart and Stroke Foundation of Ontario Chair, and a professor of Paediatrics at the University of Toronto, used a gene transfer process in her animal research to deliver a "decoy gene" that tricks cells into thinking they don't have to make a substance critical to the ductus closing process.

In normal heart development, the ductus closes within hours of birth and the lungs take over the task of oxygenating the blood. The ductus is sealed by cushions that grow together from each side of the passage. This seal prevents the back flow of blood into the heart, which can cause congestion and heart failure. But infants who are born with severe heart defects, such as blocked valves, rely on an open ductus to ensure that blood gets to the body.

"Keeping the ductus open ensures that the blood keeps flowing throughout the body, buying the baby time until surgery can be carried out to repair the heart defect," explains Dr. Rabinovitch.

The cushions that seal the ductus are made of muscle cells that migrate to the ductus along a slippery substance called fibronectin. In her research, Dr. Rabinovitch used a "decoy" gene to trick the cells into thinking they don't have to make fibronectin. Without it, muscle cells can't travel to the site of the ductus.

"Basically, we pulled the rug out from under the muscle cells as they were on their way to block off the ductus," explains Dr. Rabinovitch.

Almost one in 100 infants are born with a heart defect requiring open-heart surgery. Defects are often identified before birth through the use of fetal ultrasound. Usually the infants are treated with a hormone called prostaglandin, which helps keep the ductus open. However, prostaglandins need to be given continuously by intravenous and are associated with serious side effects such as low blood pressure and irregular heartbeats. The development of a bioengineering approach to keep the ductus open could lead to a more effective and safe way to help infants with serious heart problems survive.

"The next step in the research will be to develop a method for delivering our "decoy gene" directly into the necessary cells before the baby is born," explains Dr. Rabinovitch. "We also anticipate that successful biological engineering of the ductus can be applied to other heart problems, such as preventing the reclosing of arteries after angioplasty."

This research was funded by the Medical Research Council of Canada and The Hospital for Sick Children Foundation.


Story Source:

The above story is based on materials provided by The Hospital For Sick Children. Note: Materials may be edited for content and length.


Cite This Page:

The Hospital For Sick Children. "Scientists Use Bioengineering To Buy Time For Ailing Hearts." ScienceDaily. ScienceDaily, 2 February 1999. <www.sciencedaily.com/releases/1999/02/990202072902.htm>.
The Hospital For Sick Children. (1999, February 2). Scientists Use Bioengineering To Buy Time For Ailing Hearts. ScienceDaily. Retrieved April 2, 2015 from www.sciencedaily.com/releases/1999/02/990202072902.htm
The Hospital For Sick Children. "Scientists Use Bioengineering To Buy Time For Ailing Hearts." ScienceDaily. www.sciencedaily.com/releases/1999/02/990202072902.htm (accessed April 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, April 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins