Featured Research

from universities, journals, and other organizations

NYU And Rockefeller Scientists Design Molecules That Stymie A Notorious Bug

Date:
February 18, 1999
Source:
New York University Medical Center And School Of Medicine
Summary:
Scientists at New York University School of Medicine and The Rockefeller University have discovered the structure of a key compound that enables a dangerous bug to cause devastating infections. They have also designed molecules that block the compound's effects, opening a novel way to combat these infections.

NEW YORK, Feb. 15, 1999 -- Scientists at New York University School of Medicine and The Rockefeller University have discovered the structure of a key compound that enables a dangerous bug to cause devastating infections. They have also designed molecules that block the compound's effects, opening a novel way to combat these infections.

The scientists, led by NYU's Richard Novick, M.D., and Rockefeller's Tom Muir, Ph.D., found that an unusual peptide compound activates the disease-causing mechanism of Staphylococcus aureus, a notorious bacterium that each year infects some 500,000 hospitalized patients. By substituting parts of the compound with different chemicals, the researchers created compounds that dramatically weakened Staph infections in mice, according to a joint study published in the Feb. 16 issue of the Proceedings of the National Academy of Sciences.

"One of our long-term goals is to develop novel therapies to combat Staph," says Dr. Novick, Professor of Microbiology and Medicine at NYU School of Medicine. "Our study is extremely significant in that regard because it demonstrates the feasibility of constructing synthetic analogues that turn off Staph's ability to cause infection while leaving the bacterium intact. This may provide a way to get around the problem of antibiotic resistance because our analogues don't kill bacteria," he says.

Staphylococcus aureus causes a wide range of illnesses, from relatively minor skin abscesses to life-threatening toxic shock syndrome and other illnesses. Antibiotics kill the bacterium, but in recent years the wily bug increasingly has become resistant to the most commonly used antibiotics. The development of antibiotic-resistant strains of Staph and other bacteria has caused widespread alarm that one day there may be many so-called superbugs resistant to all known antibiotics.

Several years ago, Dr. Novick's laboratory discovered that a master gene, or global regulator, regulates a signaling pathway in the bacterium that ultimately results in its release of virulent toxins. It is these toxins, rather than the bug itself, that cause illness; indeed, strains of Staph regularly inhabit our nasal passages without causing disease.

In a study published two years ago in the journal Science, Dr. Novick and co-workers reported that a peptide, a small piece of protein, secreted by Staph activates the global regulator, and that each strain of Staph tested produced a specific peptide. Moreover, the peptide produced by one strain inhibited the global regulator of a second strain, meaning that the first strain could potential block the ability of the second strain to cause inhibition.

In the new study, Drs. Novick and Muir describe the chemical structure of these peptides and custom design molecules that can inhibit their activity in mice, providing a novel way to disarm Staph rather than killing it outright. The ring-shaped regulatory peptide is composed of seven to nine amino acids, the building blocks of peptides, and an unusual sulfur-containing bridge called a thiol ester. The inhibitor compounds were designed by replacing the thiol-ester bridge with other compounds, but retaining the peptides' ring structure.

In the study, the researchers also were able to dramatically weaken Staph infections in mice who had large abscesses on their backs caused by the bacteria. The abscesses became dramatically smaller in animals treated with specific inhibitory peptides compared to those in untreated animals, indicating that the inhibitor had weakened the bacterial infection.


Story Source:

The above story is based on materials provided by New York University Medical Center And School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

New York University Medical Center And School Of Medicine. "NYU And Rockefeller Scientists Design Molecules That Stymie A Notorious Bug." ScienceDaily. ScienceDaily, 18 February 1999. <www.sciencedaily.com/releases/1999/02/990218072137.htm>.
New York University Medical Center And School Of Medicine. (1999, February 18). NYU And Rockefeller Scientists Design Molecules That Stymie A Notorious Bug. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/1999/02/990218072137.htm
New York University Medical Center And School Of Medicine. "NYU And Rockefeller Scientists Design Molecules That Stymie A Notorious Bug." ScienceDaily. www.sciencedaily.com/releases/1999/02/990218072137.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins