Science News
from research organizations

Study Rethinks Atmospheric Chemistry From Ground Up

March 19, 1999
Purdue University
A Purdue University research team studying natural processes that affect ozone in the Arctic atmosphere has discovered that snowpacks not only absorb chemicals from the atmosphere, but also can help produce them.

WEST LAFAYETTE, Ind. -- Don't be snowed by everything the textbooks have to say about atmospheric chemistry.

A Purdue University research team studying natural processes that affect ozone in the Arctic atmosphere has discovered that snowpacks not only absorb chemicals from the atmosphere, but also can help produce them.

The findings, published in the March 18 issue of the scientific journal Nature and the March 15 issue of Geophysical Research Letters, cast a new light on scientists' perceptions of how atmospheric gases are processed, says Paul Shepson, professor of atmospheric chemistry at Purdue.

The new findings also may affect the way that scientists view data from ice core studies, because researchers have assumed that the air trapped in ice provided representative samples of atmospheric conditions at the time the ice was formed.

"Ice core studies designed to look at reactive species such as nitrates may have to be revisited, as the air bubbles found in these ice cores may not be the mirrors of atmospheric composition that we suspected they were," Shepson says.

This is not a concern for more stable greenhouse gases such as carbon dioxide and methane, which have been extensively studied in ice cores, because these stable gases are less likely to react with other compounds in snow or ice, Shepson says.

His group studies the chemistry of ozone in the troposphere, the lowest part of the atmosphere. Ozone, a beneficial component of the earth's upper atmosphere, is a pollutant at the ground level.

Last winter, Shepson led a research group to the Canadian Arctic to observe how sunlight interacts with various gases in the atmosphere to reduce near-surface ozone levels.

"It has recently been observed that, at polar sunrise, which occurs in March or April after several months of complete darkness, ozone in a thin layer of air over the Arctic ocean is completely removed," Shepson says. "This was a big surprise to us, and it indicates that our understanding of atmospheric ozone is poor."

From the Environment Canada research site at the Canadian Forces base at Alert, the group tracked levels of atmospheric compounds, including formaldehyde, over a two-month period. Formaldehyde is an important part of the atmosphere's self-cleaning mechanism because it is a major source of free radicals, Shepson says.

"The atmosphere acts to clean itself of pollutants through reactions involving free radicals. When formaldehyde absorbs light, it falls apart to produce these free radicals."

Previous studies of formaldehyde in the Arctic had shown concentrations up to 10 times higher than expected, so graduate student Ann Louise Sumner spent two months at the Alert laboratory measuring formaldehyde in the snowpack and in the atmosphere.

These measurements, published in the Nature article, suggest that formaldehyde is produced through photochemical reactions at the snow surface.

"The data account for much of the discrepancy between the high concentrations of formaldehyde found in the Arctic and the amounts predicted by our models," Shepson says.

The second paper, published in Geophysical Research Letters, reports on studies at the ice core site at Summit, Greenland, where the Purdue group participated in an experiment led by Richard Honrath of Michigan Technological University.

The studies found further complexity and importance in photochemical processes that occur at the snow surface, Shepson says.

Specifically, the team found that concentrations of nitric oxide and nitrogen dioxide -- collectively known as NOx -- were actually higher within the snowpack than in the atmosphere.

The findings suggest that nitrate ions in the snow can interact with sunlight to produce NOx, a pollutant derived largely from the combustion of fossil fuels and a critical precursor to the production of ozone the atmosphere, Shepson says.

"This observation changes the way we look at atmospheric chemistry in a fundamental way, in that deposition of nitric acid to the snow was previously regarded as the final fate of NOx," he says. "Now it appears that nitric acid in the snow can be reprocessed by interactions with light, causing re-release of a variety of pollutants back into the atmosphere."

In addition to forcing a re-evaluation of data from ice core studies, the new findings call into question some models that are used to predict long-term changes in the composition of our atmosphere.

"Specifically, models of atmospheric chemistry need to do a better job of treating interaction of gases with surfaces," Shepson says. "Although we are starting to do better with atmospheric particles, it is important to remember that a potentially important atmospheric surface is the surface of the earth."

Shepson and his group are working with another group at Purdue to develop new computer models that incorporate the chemical reactions that occur in snowpacks into the current models of atmospheric chemistry and transport.

Working with Shepson on the studies are graduate students Bryan Splawn, a native of Spartanburg, S.C., Sumner of Lake in the Hills, Ill., and Brian Michalowski of Racine, Wis.

Shepson's studies at Purdue are funded by the National Science Foundation and BASF.

Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.

Cite This Page:

Purdue University. "Study Rethinks Atmospheric Chemistry From Ground Up." ScienceDaily. ScienceDaily, 19 March 1999. <>.
Purdue University. (1999, March 19). Study Rethinks Atmospheric Chemistry From Ground Up. ScienceDaily. Retrieved May 27, 2015 from
Purdue University. "Study Rethinks Atmospheric Chemistry From Ground Up." ScienceDaily. (accessed May 27, 2015).

Share This Page: