Featured Research

from universities, journals, and other organizations

Researchers First To Directly Increase Enzyme’s Activity

Date:
March 23, 1999
Source:
University Of Arkansas
Summary:
A University of Arkansas chemist has become the first researcher to increase the activity of an enzyme that breaks down one of nature’s most abundant materials that can then be converted into ethanol — a potentially abundant source of environmentally friendly fuel.

FAYETTEVILLE, Ark. — A University of Arkansas chemist has become the first researcher to increase the activity of an enzyme that breaks down one of nature’s most abundant materials that can then be converted into ethanol — a potentially abundant source of environmentally friendly fuel.

Related Articles


Joshua Sakon, chemistry, other researchers from the University of Arkansas and scientists from the National Renewable Energy Laboratory in Golden, Colo. study the enzyme cellulase, which cleaves cellulose into glucose, a sugar that can be fermented into ethanol.

Intense research has focused on this process because cellulose found in plants accounts for about half the organic material on earth, which makes it potentially a vast renewable energy resource.

However, in the reaction that transforms the organic matter into fuel, the low activity of the enzyme cellulase acts as a bottleneck, slowing the whole procedure down. For at least ten years, scientists have sought ways to increase the enzyme’s activity, and thus its productivity — to no avail.

Sakon’s group increased the enzyme’s activity by 13 percent. The researchers will present their work today (March 21) at the American Chemical Society meeting in Anaheim, Calif.

Cellulase cuts the plant tissue cellulose into glucose — a simple sugar. It does so by attaching to the cellulose, clipping it and releasing the resulting sugar moelcules.

"Many people tried to come up with better scissors," Sakon said. He decided to focus instead on the enzyme structures that hold the cellulose in place while it’s being clipped. If these structures had a looser grip, he reasoned, they would release the sugars faster, increasing the reaction’s activity.

The researchers extracted cellulose from fast-growing yellow poplar trees. They used X-ray crystallography to examine the structure of the cellulase-cellulose interaction.

Then Sakon worked with University of Arkansas physical chemist Lothar Schaffer, using computer models to predict the impact of modifying the enzyme at certain sites.

The researchers then mutated the amino acid tyrosine 245, one of the biochemical "hands" that holds the cellulose in place. They substituted glycine, an amino acid that creates a weaker bond, or grip, at that site.

The resulting mutant increased the enzyme’s activity by 13 percent.

Sakon already is looking at the next experiment — perhaps trying mutations elsewhere in the enzyme’s "hold-and-release" region.

"Our experimental calculations showed we should have got a lot higher activity," Sakon said. "Now something else has become the rate-limiting step."


Story Source:

The above story is based on materials provided by University Of Arkansas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas. "Researchers First To Directly Increase Enzyme’s Activity." ScienceDaily. ScienceDaily, 23 March 1999. <www.sciencedaily.com/releases/1999/03/990323050251.htm>.
University Of Arkansas. (1999, March 23). Researchers First To Directly Increase Enzyme’s Activity. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/1999/03/990323050251.htm
University Of Arkansas. "Researchers First To Directly Increase Enzyme’s Activity." ScienceDaily. www.sciencedaily.com/releases/1999/03/990323050251.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins