Featured Research

from universities, journals, and other organizations

Digital Organisms Give Life To Questions Of Evolution

Date:
August 13, 1999
Source:
Michigan State University
Summary:
Evolution is a pain for scientists to study. It just plain takes too long. Yet revolutionary work by scientists at Michigan State University, Caltech and UCLA has created an artificial world inside a computer, a world in which computer programs take the place of living organisms. They go forth and multiply, they mutate and they adapt by natural selection.

EAST LANSING, Mich. - Evolution is a pain for scientists to study. It just plain takes too long.

Related Articles


Yet revolutionary work by scientists at Michigan State University, Caltech and UCLA has created an artificial world inside a computer, a world in which computer programs take the place of living organisms. They go forth and multiply, they mutate and they adapt by natural selection.

Studying these digital organisms, as reported in the Aug. 12 edition of Nature, offers a chance to test generalizations about how life has evolved.

"These digital bugs are judged on their reproductive performance," said MSU University Distinguished Professor Richard Lenski, an evolutionary biologist and the paper's lead author. "In that sense, they are like organic life. Now the fun begins, because we can start asking questions about them, just like the questions biologists ask about real organisms."

Among the first revelations: Complicated interactions among genetic mutations are very common in these digital organisms, a pattern that also has been reported in real organisms ranging from bacteria to flies. Lenski said this is significant, because it shows that "this artificial world yields some of the same complexities that we biologists see in the real living world, but we have trouble studying these complexities in detail with the real organisms because the genetic experiments get too complicated.

"This is something that has been underappreciated in genetics," Lenski said. "It's been easy to think we understand a mutation when we're just looking at it by itself, but now we can see how it can interact with other mutations, and how its effects change with those interactions."

A less expected discovery: More complex digital organisms are buffered from the damaging effects of multiple mutations than are simpler forms. This finding raises new questions and suggests the need for further experiments with real organisms to see if it also applies to them.

The work is the child of a marriage of biology and computer science.

Lenski, an evolutionary biologist whose work on evolution of bacteria in a test tube has been widely published, has joined forces with Charles Ofria, who recently joined MSU after receiving degrees in computation and neural systems and computer science from California Institute of Technology, and Christoph Adami, a physicist at Caltech who with Ofria designed the computer program to simulate life.

According to Adami, "I think this is the first time we have convinced biologists that artificial life is not just a pipe dream, but is answering some fundamental questions about biology."

The program, called Avida, is basically an artificial petri dish. Ofria and Travis Collier, a UCLA graduate student, created two kinds of digital organisms: simple and complex. The two essentially are cousins: the simple ones' only task is to reproduce. Its more highly evolved relatives, the complex, not only reproduce, but also perform mathematical calculations. Both are rewarded with more computer time.

Avida randomly adds mutations to the programs, thus spurring natural selection and evolution. The team then programs changes in the environment to see how the bugs adapt.

The digital organisms offer an enormous advantage even over the speedy evolution of the rapidly reproducing E. coli bacteria Lenski usually studies. In a Nature publication in 1997, Lenski reported on findings made by looking at 250 different genotypes of E. coli. In a similar experiment run on Avida, the team has been able to scrutinize more than a billion genotypes.

Caltech's Adami says the conclusions are exciting because the "artificial petri dish" approach demonstrates that digital organisms can be used by researchers to answer important biological questions.

"The advantages are that it's very simple and that it abstracts the system as much as possible," Adami says. "It's very difficult to ask very fundamental questions about life with a living system because the living system is very complex after four billion years of evolution."

Understanding the mechanics of how organisms evolve can lead to greater understanding of the inner workings of organisms that can be key to genetic engineering, Lenski said.

"Whether it's bacteria, flies or people, the great challenge of genetics today is dealing with the incredible amounts of data coming from DNA sequencing and new genomic approaches, and then figuring out how all the pieces of the puzzle fit together. Using these digital organisms allows us to simplify things a bit and it speeds up our experiments a lot. They won't answer all of our questions about real organisms, but they may help us shape our ideas and develop new theories."

Moreover, the research also is opening doors into the world of computer science, particularly the science of how computers learn.

"Computer programs are becoming more and more complicated," Lenski said. "We're at the point in some applications where it's hard for the human brain to tell the computer what we want it to do. One area of interest is whether one can employ computer programs that evolve through rewards to do assigned tasks without a human watching each step."

Microsoft and the National Science Foundation have funded the authors' research on artificial life.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "Digital Organisms Give Life To Questions Of Evolution." ScienceDaily. ScienceDaily, 13 August 1999. <www.sciencedaily.com/releases/1999/08/990813004013.htm>.
Michigan State University. (1999, August 13). Digital Organisms Give Life To Questions Of Evolution. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1999/08/990813004013.htm
Michigan State University. "Digital Organisms Give Life To Questions Of Evolution." ScienceDaily. www.sciencedaily.com/releases/1999/08/990813004013.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins