Featured Research

from universities, journals, and other organizations

Landmark Progress In Understanding Ribosome Structure-- Research Done At Brookhaven Lab's Light Source

Date:
August 26, 1999
Source:
Brookhaven National Laboratory
Summary:
Two reports in the August 26 issue of the scientific journal Nature describe landmark progress in understanding the structure of the ribosome. The ribosome is a complex particle that makes the thousands of proteins that are required for the structure and function of each living cell.

Upton, NY -- Two reports in the August 26 issue of the scientific journal Nature describe landmark progress in understanding the structure of the ribosome. The ribosome is a complex particle that makes the thousands of proteins that are required for the structure and function of each living cell. Both Nature reports are based on data generated by a scientific technique called x-ray crystallography, performed at the National Synchrotron Light Source, operated by the U.S. Department of Energy's Brookhaven National Laboratory.

Related Articles


The ribosome is the largest and most complex component of a cell to be successfully studied via x-ray crystallography. Researchers from the University of Utah; the Medical Research Council Laboratory of Molecular Biology, Cambridge, England; and Brookhaven Lab presented a model of the small ribosomal subunit known as 30S, from the bacterium Thermus thermophilus. Yale University and Brookhaven researchers reported on the structure of the large ribosomal subunit known as 50S, from the bacterium Haloarcula marismortui. These two independent research efforts point the way for future study of large ribosome complexes.

Malcolm Capel, a Brookhaven National Laboratory biophysicist who is a co-author on both Nature papers, explained, "This research is a technical and scientific tour de force. On a basic science level, these findings represent a giant step on the road to understanding how living organisms make proteins. On a more practical level, many bacterial infections are stopped by antibiotics, which work by inhibiting the production of ribosomes in bacterial cells. Better structural knowledge of ribosomes may lead to developing more effective antibiotics through computer-modeling. Also, ribosomes are used by industry to make important enzymes, which promote chemical reactions. This new structural information may be helpful for developing further industrial applications."

To gain this new data, the researchers grew crystals of ribosomes, and, to protect them from radiation damage, froze them to 173°C. Crystals provided the researchers with molecules that are arranged in a regularly repeated pattern for their studies. An intense x-ray beam from the Light Source penetrated the crystal, resulting in tens of thousands of diffraction spots on a computerized imaging detector. The researchers measured the position and intensity of each spot, and then mathematically calculated the electron density of the sample. From these data, they were able to build a molecular model of the ribosomal structure.

Specifically, the ribosome translates the genetic code of nucleic acids known as messenger RNAs into chains of amino acids that make up proteins. The 30S ribosomal subunit recognizes messenger RNA and insures that the sequence of information in the RNA is correctly copied into a protein. The 50S subunit performs the chemical steps involved in linking together amino acids to form proteins. The 30S and 50S subunits work together to generate proteins in all living cells.

Both Nature papers report on structural components at a resolution of five angstroms, a measurement that is about one ten-thousandth the thickness of a human hair. While ribosomes make proteins, they are also composed of proteins and RNA themselves, and, with this resolution, the researchers were able to differentiate a protein from the ribosomal complex. In addition, the surface topology of both subunits is revealed in detail, showing the way the two subunits fit together to form a whole, functional 70S ribosome complex.

The authors of paper describing the ribosome 30S subunit are William M. Clemons, Jr., Joanna L.C. May, Brian T. Wimberly, and John P. McCutcheon from the University of Utah and Venki Ramakrishnan from the University of Utah and the Medical Research Council, Cambridge, England; and Malcolm Capel, from Brookhaven National Laboratory. The research on the large ribosomal 50S subunit is reported by Nenad Ban, Poul Nissen, Peter B. Moore and Thomas A. Steitz from Yale University; and Malcolm Capel from Brookhaven.

The U.S. Department of Energy's Brookhaven National Laboratory creates and operates major facilities available to university, industrial and government personnel for basic and applied research in the physical, biomedical and environmental sciences, and in selected energy technologies. The Laboratory is operated by Brookhaven Science Associates, a not-for-profit research management company, under contract with the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Landmark Progress In Understanding Ribosome Structure-- Research Done At Brookhaven Lab's Light Source." ScienceDaily. ScienceDaily, 26 August 1999. <www.sciencedaily.com/releases/1999/08/990826071734.htm>.
Brookhaven National Laboratory. (1999, August 26). Landmark Progress In Understanding Ribosome Structure-- Research Done At Brookhaven Lab's Light Source. ScienceDaily. Retrieved December 27, 2014 from www.sciencedaily.com/releases/1999/08/990826071734.htm
Brookhaven National Laboratory. "Landmark Progress In Understanding Ribosome Structure-- Research Done At Brookhaven Lab's Light Source." ScienceDaily. www.sciencedaily.com/releases/1999/08/990826071734.htm (accessed December 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Gifted Drones Are Already Causing Problems

Christmas Gifted Drones Are Already Causing Problems

Newsy (Dec. 25, 2014) — Commercial drones were a popular gift this Christmas, but flying one is harder than it looks, and the results can range from comical to catastrophic. Video provided by Newsy
Powered by NewsLook.com
NASA Cameras Capture Solar Flare

NASA Cameras Capture Solar Flare

Reuters - US Online Video (Dec. 25, 2014) — NASA cameras capture images of intense solar flare on the sun. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Ukrainian Coal Miners Work to Stave Off Electricity Shortage

Ukrainian Coal Miners Work to Stave Off Electricity Shortage

AFP (Dec. 24, 2014) — Coal miners in the separatist east of Ukraine work to ensure there won't be electricity shortages during the coldest months of winter, but the country has declared a state of emergency in its electricity market. Duration: 00:59 Video provided by AFP
Powered by NewsLook.com
Tech's Next Step: Social Change

Tech's Next Step: Social Change

Reuters - Business Video Online (Dec. 23, 2014) — Technology is constantly changing lives but 100 firms have done more than most. As Joel Flyn reports a malaria diagnosis app, do-it-yourself architecture and camera glasses have recently won awards for driving social change. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins