Featured Research

from universities, journals, and other organizations

Image Of Electron Orbitals Confirms Controversial Bonding Hypothesis

Date:
September 3, 1999
Source:
Arizona State University
Summary:
Using a combination of convergent beam electron diffraction and X-ray diffraction techniques, a team of materials researchers at Arizona State University have achieved startlingly clear images of electron orbitals responsible for bonding in Cu2O, also known as cuprite, a ceramic semiconductor with a rare structure.

Using a combination of convergent beam electron diffraction and X-ray diffraction techniques, a team of materials researchers at Arizona State University have achieved startlingly clear images of electron orbitals responsible for bonding in Cu2O, also known as cuprite, a ceramic semiconductor with a rare structure.

The images map the charge density of non-ionic bonds in Cu2O and thus provide the first experimental verification of the controversial hypothesis that both ionic and covalent bonding occurs in the material. In addition, the images show that the covalent bonding exists not just between oxygen and copper atoms, but also between pairs of copper atoms.

The research findings, authored by J.M. Zuo, M. Kim, and J.C.H. Spence of the ASU Department of Physics and Astronomy, and M. O'Keeffe of the ASU Department of Chemistry, appear in the September 2 issue of the journal Nature and one of the associated images appears on the issue's cover.

The first accurate experimental images (not computer simulations) ever achieved showing the electron formations responsible for atomic bonding in Cu2O, the charge-density maps show electron clouds in a distinct dumbbell shape, with a torus and two three-petaled rings surrounding the middle. This complex formation (resembling an elaborate baby teether) is predicted by theory for a "s-dz2 orbital hybridization," which leaves a "hole" on the copper ions. The maps also show fainter, less defined distributions of electrons between the copper atoms in the crystal matrix, indicating a metal-to-metal bond.

According to the theory of quantum mechanics, the extremely fast moving electrons (described as both particles and waves) that surround atomic nuclei cannot actually be seen in a specific location, but instead can only be known by the areas in which they are likely to occur - orbital "clouds." An atom's electrons can form bonds - the glue that ties atoms together - including covalent bonds, where electrons are closely shared between two atoms, and ionic bonds, where atoms literally lose some of their electrons to other atoms. A radical extension to this simple picture of chemical bonding theory was proposed some years ago, and it has finally been shown to be correct.

"Much of current theory predicts ionic but not covalent or metal-to-metal bonding in oxides like cuprite," said Zuo, the paper's lead author. "Understanding bonding in copper oxides is the key to solving the biggest unsolved problem in solid state theory - the nature of high temperature superconductivity in copper oxides. Here we see direct experimental pictures of bonding that explain the structure of cuprite."

Metal oxides like copper oxides are known to materials scientists as "complex materials" because they have many interesting electrical and magnetic properties and have a wide variety of technological applications, including uses as magnetic media for computer disks, for a new type of dynamic memory for computers, and for making miniature electric motors and magnetic sensors for mine-detection.

Though physicists have long argued that the interesting properties of metal oxides indicate the presence of bonding that was not ionic in the materials, finding direct evidence of metal-to-metal bonding in cuprite was still somewhat of a scientific surprise.

"In particular, the evidence of covalent bonding between metals is likely to make them re-write the chemistry textbooks," said Spence. "Chemistry has always assumed that these are only possible between copper and oxygen in this material. These chemical bonds have not been seen before, because they differ so slightly from the charge distributions in un-bonded atoms."

Both X-ray and electron diffraction were used in the mapping. Electrons were used for small scattering angles to avoid the "extinction effect" that otherwise distorts X-ray measurements, and X-rays at high angles where they are more accurate - a combination that gave the team sufficient accuracy for the fine details of the images. The clear definition of the covalent Cu-O bonds was obtained by using a technique that first moved all ions (Cu+ and O--) to the background of the map and then subtracted the background from the image.

Though the team's maps are computer generated, they are not simulations, but actual images produced directly from the electron diffraction results, much as traditional photographs are the direct result of focused beams of light of known wavelengths leaving a record on film.

"This is really exciting," said Zuo. "It's the first time that we've ever seen an orbital at this level of accuracy. It's direct, experimental proof of the quantum model."

The team's research was performed at ASU's high resolution electron microscopy center and was funded by grants from the National Science Foundation.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Image Of Electron Orbitals Confirms Controversial Bonding Hypothesis." ScienceDaily. ScienceDaily, 3 September 1999. <www.sciencedaily.com/releases/1999/09/990903071415.htm>.
Arizona State University. (1999, September 3). Image Of Electron Orbitals Confirms Controversial Bonding Hypothesis. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/09/990903071415.htm
Arizona State University. "Image Of Electron Orbitals Confirms Controversial Bonding Hypothesis." ScienceDaily. www.sciencedaily.com/releases/1999/09/990903071415.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins