Featured Research

from universities, journals, and other organizations

'Biochemical Storm' Following Brain Trauma An Important Factor In Treatment, University Of Florida Researcher Finds

Date:
October 22, 1999
Source:
University Of Florida Health Science Center
Summary:
A forceful blow to the head can trigger a "Pacmanlike" enzyme to begin gobbling up important structural proteins in the brain for up to one month afterward-weeks longer than previously suspected, according to a University of Florida Brain Institute researcher.

GAINESVILLE, Fla.---A forceful blow to the head can trigger a "Pacmanlike" enzyme to begin gobbling up important structural proteins in the brain for up to one month afterward-weeks longer than previously suspected, according to a University of Florida Brain Institute researcher.

The finding, based on studies in rats, suggests that treatment for traumatic brain injury must take into account tissue damage that continues to occur long after an accident. Although a number of studies recently have assessed therapies for traumatic brain injury, currently no effective treatment exists.

"Emergency room medical personnel often talk about a golden hour, that if you don't get a person into treatment within the first hour or so after an injury, a lot of damage has been done to the patient," said Ronald L. Hayes, director of UF's planned Center for Traumatic Brain Injury Studies, a component of the university's multidisciplinary Brain Institute. "With traumatic brain injury, the thought has been that treatment within the first two days is critical."

But data from Hayes' lab suggest this critical period may extend much longer.

"In our studies, we've found that a biochemical storm that is initiated with an injury continues for at least a month. The implication is that we may need to treat these patients over a much longer period than anyone had ever imagined," said Hayes, who is reporting his findings on the action of calpains on Saturday (10/23/99) at the annual meeting of the National Neurotrauma Society in Miami Beach. Calpains are a type of protein-destroying enzyme found in cells throughout the body.

"This is one of a very few research efforts that opens up a potential window for treatment in which we might be able to suppress the harmful activity of calpains while allowing repair to occur," said Kevin Wang, a senior research associate at Parke-Davis Pharmaceutical Research who is conducting laboratory experiments seeking to block the action of calpains.

Automobile crashes, gunshot wounds, sporting accidents and other incidents cause an estimated 52,000 brain injury deaths each year in the United States, according to the National Institutes of Health. An additional 70,000 people - with men outnumbering women 2 to 1 - suffer a blow that results in substantial ongoing difficulties with communication tasks, coordination, memory and thinking. An estimated 5.3 million people are permanently disabled.

Because of the lasting consequences of brain damage, lifetime costs for care and rehabilitation for a person with a severe injury range from $600,000 to $1.9 million, according to NIH.

Hayes and Brian Pike, an assistant professor of neuroscience, conducted their experiments with colleagues at the University of Texas Medical School before transferring their efforts to UF this past summer. The experiments showed that calpains switch on when calcium floods cells after traumatic brain injury.

The activation of the calpains is associated with the death of brain cells and could contribute to the extensive atrophy and shrinkage of the brain seen after traumatic injury.

"In the past several years, there have been a large number of clinical trials testing treatments for brain injury that have shown no effect," said Hayes, a professor of neuroscience in UF's College of Medicine. "Researchers thought they had an effective therapy, but when they tried it, the people didn't get better. One reason may be that they didn't treat the patient long enough because the biochemical storm lasted longer than two days."

To complicate matters, some level of calpain activity may actually be a necessary part of a "resculpting" effort that can repair damage.

"We may have to completely redefine our approach to therapy, because if you try to get in there too early and for too brief a time with a treatment, you might not block the damage that lies ahead," Hayes said. "But if you give a treatment for too long, you might block some of the self-repair that will make the patient better. Understanding these relationships is critical, and our research is a necessary first step in this effort."


Story Source:

The above story is based on materials provided by University Of Florida Health Science Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida Health Science Center. "'Biochemical Storm' Following Brain Trauma An Important Factor In Treatment, University Of Florida Researcher Finds." ScienceDaily. ScienceDaily, 22 October 1999. <www.sciencedaily.com/releases/1999/10/991021132743.htm>.
University Of Florida Health Science Center. (1999, October 22). 'Biochemical Storm' Following Brain Trauma An Important Factor In Treatment, University Of Florida Researcher Finds. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/10/991021132743.htm
University Of Florida Health Science Center. "'Biochemical Storm' Following Brain Trauma An Important Factor In Treatment, University Of Florida Researcher Finds." ScienceDaily. www.sciencedaily.com/releases/1999/10/991021132743.htm (accessed September 17, 2014).

Share This



More Mind & Brain News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins