Featured Research

from universities, journals, and other organizations

Ancient Iron-Rich Rocks Point To Early Occurrence Of Land-Based Life

Date:
October 28, 1999
Source:
Penn State
Summary:
Iron-rich rock formations dating to 2.3 billion years ago suggest that the Earth's land masses were covered with living things at least a billion years earlier than previously thought, according to a Penn State geologist.

Denver, Colo. -- Iron-rich rock formations dating to 2.3 billion years ago suggest that the Earth's land masses were covered with living things at least a billion years earlier than previously thought, according to a Penn State geologist.

Related Articles


"Until now, the earliest accepted date for land-based life was 1.2 billion years ago, but now we can push that back at least another billion years," says Dr. Hiroshi Ohmoto, professor of geosciences and director of the Penn State Astrobiology Research Center. "Of course, terrestrial life back then was more in the nature of bacterial mats than oak trees and mammals."

Ohmoto, in collaboration with Nick Beukes of Rand Afrikaans University, Johannesburg, South Africa, investigated laterites, iron-rich deposits that form when organic acids -- those acids created when living things decay -- leach iron from upper layers of rock and then deposit them as oxides in layers below. The normal make-up of a laterite is three bands -- an iron-deficient layer covered by an iron-rich layer that is covered by an iron-deficient layer. Modern laterites form in the tropics where large amounts of organic material rapidly decay.

"In order for laterites to form, there must be organic material and atmospheric oxygen," Ohmoto told attendees at the annual meeting of the Geological Society of America today (Oct.26) in Denver. "Since we have now traced these laterites to 2.3 billion years ago, there must have been atmospheric oxygen and terrestrial life at that time." Ohmoto originally looked at formations in Waterval Onder, South Africa, an area near Pretoria. However, in this area, the iron-rich layer and upper iron-poor layer have eroded away. To get the big picture, the researchers looked at core samples drilled by miners who typically drill through these layers looking for gold and uranium ores buried much farther down.

"We looked at two cores in South Africa and one in Botswana that showed the complete series of rocks," says Ohmoto. "It appears that this laterite formation covers a rather large area."

There are several places further west where the formation is actually exposed, but these locations had previously been dated as much younger rock. The researchers have now identified these laterite formations as part of the same, much older formation, because it sits directly on the Hekpoort basalt, an extensive basalt formation that was extruded 2.3 to 2.4 billion years ago.

"Because we can trace the basalt all the way across, even to a depth of 2,600 feet, we know that the laterite deposits directly above are only slightly younger than the basalts," says Ohmoto. v Geologists currently are involved in a debate as to when significant amounts of oxygen appeared in the Earth's atmosphere. These laterites suggest that oxygen was plentiful 2.3 billion years ago, both for the generation of land-based biota and to convert iron to iron oxides.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Ancient Iron-Rich Rocks Point To Early Occurrence Of Land-Based Life." ScienceDaily. ScienceDaily, 28 October 1999. <www.sciencedaily.com/releases/1999/10/991028072233.htm>.
Penn State. (1999, October 28). Ancient Iron-Rich Rocks Point To Early Occurrence Of Land-Based Life. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/1999/10/991028072233.htm
Penn State. "Ancient Iron-Rich Rocks Point To Early Occurrence Of Land-Based Life." ScienceDaily. www.sciencedaily.com/releases/1999/10/991028072233.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins