Featured Research

from universities, journals, and other organizations

Novel Neurotransmitter Overturns Laws Of Biology, Offers Potential For Stroke Treatment

Date:
November 12, 1999
Source:
Johns Hopkins Medical Institutions
Summary:
Johns Hopkins scientists have identified a new and unusual nerve transmitter in the brain, one that overturns certain long-cherished laws about how nerve cells behave.

" this...could put researchers on the royal road to stroke treatment."

Johns Hopkins scientists have identified a new and unusual nerve transmitter in the brain, one that overturns certain long-cherished laws about how nerve cells behave.

Reporting in the current Proceedings of the National Academy of Sciences, the team led by neuroscientist Solomon H. Snyder, M.D., has also pinpointed the neurotransmitter's source -- itself a biologically unusual enzyme -- whose novelty as a drug target "could put researchers on a royal road to stroke treatment."

The neurotransmitter is an amino acid called D-serine. It's odd, Snyder says, because it differs in structure from any known molecule in its class found in mammals and other higher animals. D-serine is what chemists call a right handed amino acid. Normally, amino acids have atoms that extend from the left side of the molecule. These L-amino acids, as they're called, are the rule in vertebrates, whose biochemistry is set up to deal with these forms.

Some primitive organisms, however, notably bacteria, have a mixture of both L-amino acids and their mirror images called D-amino acids. But to find a D-amino acid in humans, Snyder says, "is unprecedented;" it's the equivalent of finding a Pterodactyl in your local pet shop.

Moreover, unlike dopamine, serotonin or other traditional nerve transmitters, D-serine isn't secreted at nerve cell endings in the brain. Instead, it comes from adjacent cells called astrocytes, which enclose nerve cells in the brain's gray matter like a glove.

The current study adds conclusive evidence to the idea that D-serine -- released from astrocytes -- activates receptors on key nerve cells in the brain. Activating these receptors, called NMDA receptors, has long been linked with learning, memory and higher thought. NMDA receptors are also known culprits in stroke damage in the brain, and have become a focus for anti-stroke research.

A body of work at Hopkins in the last five years has pointed to D-serine's role, but the new study, in which researchers have isolated and cloned the enzyme that makes D-serine, shores it up. The enzyme, serine racemase, is as unusual as its product in that it forms D-serine from L forms already in cells. "No other mammalian enzyme behaves like it," Snyder says. The oddity of having an enzyme that converts amino acids from a left to a right-handed form makes it an ideal drug target, he adds.

It invites hope that drugs inhibiting serine racemase in a timely way could damp down production of D-serine and thus squelch activity at NMDA receptors. This would be useful, during a stoke, Snyder says, when lack of oxygen in tissues triggers reactions that greatly overstimulate the NMDA receptor. Overstimulation triggers reactions that destroy nerve cells. "Being able to turn off or turn down the receptors might prevent damage," he adds.

In this study, when the scientists added L-serine to cells artificially constructed to contain the racemase enzyme, most of the L-serine was transformed to its D-serine twin. The researchers also found D-serine and serine racemase concentrated in astrocytes adjacent to NMDA receptors, but less common or nonexistent in other neural tissues.

For years, neuroscientists assumed that NMDA receptors could only be stimulated by a single neurotransmitter, an amino acid called glutamate. They now know that two neurotransmitters are needed to stimulate the receptors. D-serine was recently proposed by the Hopkins scientists as the second, largely because microscope images of tagged D-serine show it's physically near NMDA receptors in the synapse. Also, knocking D-serine out with enzymes quickly stops NMDA receptors from being active.

Hopkins researchers aren't clear why nature would have such a bizarre and highly specific neurotransmitter as D-serine, but Snyder suggests it may be because having two neurotransmitters required to trigger the NMDA receptor may be a natural fail-safe mechanism, like having two keys to the start button for a nuclear device.

"The NMDA receptor is so delicate, so crucial to us that some safeguards are in order," says Snyder. "Get too much glutamate -- one of the most abundant chemicals in the body -- and you're in trouble. But having a highly specific process to make one of the neurotransmitters could insure that activating a receptor doesn't happen by accident. The path to D-serine is pretty selective."

Other researchers in the study are Herman Wolosker, M.D., Ph.D., and Seth Blackshaw, Ph.D. The work was supported by a U.S. Public Health Service grant and a grant of the Theodore and Vada Stanley Foundation.

Under the terms of a licensing agreement between the Johns Hopkins University and Guilford Pharmaceuticals, Inc., Dr. Snyder is entitled to a share of royalty received by the University on sales of products related to the technology described in this release. The University owns stock in Guilford, with Dr. Snyder having an interest in the University share under University policy. The University's stock is subject to certain restrictions under University policy. Dr. Snyder serves on the Board of Directors and the Scientific Advisory Board of Guilford, he is a consultant to the company, and he owns additional equity in Guilford. This arrangement is being managed by the University in accordance with its conflict of interest policies

A diagram showing how the nerve synapse and astrocytes are related can be found at this Web site: http://hopkins.med.jhu.edu/synapse.html

This article, titled "Serine racemase: A Glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission," is in the November issue of The Proceedings of the National Academy of Sciences, issue 23, volume 96, pages 13409-13414.

Related articles from Hopkins:"D-Serine as a Neuromodulator:Regional and Developmental Localizations in Rat Brain Glia Resemble NMDA Receptors," by Michael J. Schell, Solomon Snyder et al. in The Journal of Neuroscience, March 1, 1997, 17(5):1604-1615.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Novel Neurotransmitter Overturns Laws Of Biology, Offers Potential For Stroke Treatment." ScienceDaily. ScienceDaily, 12 November 1999. <www.sciencedaily.com/releases/1999/11/991112064925.htm>.
Johns Hopkins Medical Institutions. (1999, November 12). Novel Neurotransmitter Overturns Laws Of Biology, Offers Potential For Stroke Treatment. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/1999/11/991112064925.htm
Johns Hopkins Medical Institutions. "Novel Neurotransmitter Overturns Laws Of Biology, Offers Potential For Stroke Treatment." ScienceDaily. www.sciencedaily.com/releases/1999/11/991112064925.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins