Featured Research

from universities, journals, and other organizations

A Molecule Family Hinders Spinal Cord Regeneration, UF Brain Institute Team Finds

Date:
December 2, 1999
Source:
University Of Florida Health Science Center
Summary:
Nerve tissue transplants are among the promising experimental therapies to restore communication among cells in injured spinal cords, but scientists long have wondered why the transplanted cells don't grow more vigorously, thereby enhancing the level of recovery.

GAINESVILLE, Fla. --- Nerve tissue transplants are among the promising experimental therapies to restore communication among cells in injured spinal cords, but scientists long have wondered why the transplanted cells don't grow more vigorously, thereby enhancing the level of recovery.

Related Articles


Now experiments in rats at the University of Florida Brain Institute suggest a possible explanation and a potential target for therapeutic intervention: Researchers suspect that in the days following a transplant, a particular family of molecules forms a barrier that prevents many nerve fiber connections from growing.

The molecules, chondroitin sulfate proteoglycans, or CSPGs, consist of a protein core surrounded by sugars arranged like bristles on a bottle brush; they occur naturally throughout the body. During development, CSPGs are thought to play a vital role by forming boundaries that guide migrating cells to appropriate destinations.

But following an injury, their levels increase so substantially that their growth-regulating function appears to contribute to a failure of the nerve cells to regenerate, according to research published in this month's issue of the journal Experimental Neurology.

The new study expands on previous research indicating increased levels of CSPGs following head and spinal cord injury. Unlike earlier research, however, the UF experiments involved animals with compression-type injuries, which are considered to closely mimic the damage typically experienced by people.

The UF experiments also were the first to look at CSPG expression in cellular transplants.

"We were very surprised to see that the CSPGs increased rapidly, not only in the host around the transplant, but in the transplanted tissue itself," said Dena R. Howland, a research assistant professor of neuroscience in UF's College of medicine and one of the paper's authors. "This increase appears to create a wall of molecules known to be associated with limiting growth. Perhaps as injured host fibers are trying to grow into the transplant, they are blocked by this wall of CSPGs. And, as the fibers of transplanted neurons are trying to grow out, they are also rapidly blocked."

"These molecules may be one of factors that contribute to the failure of the adult, mammalian injured spinal cord to regenerate," added Michele L. Lemons, a visiting assistant professor at Hamilton College in New York who conducted the experiments while a UF doctoral student in neuroscience. "Therefore, a better understanding of these molecules could significantly contribute to our understanding of regeneration failure."

Continuing research at UF will explore which individual molecules within the class of CSPGs limit nerve cell growth.

UF scientists, with support from the U.S. National Institutes of Health, the U.S. Department of Veterans Affairs and the state of Florida, have been exploring multidisciplinary approaches to the treatment of spinal cord injury for more than a decade. Building upon findings earlier in the 1990s that they could restore some lost physical functions in spinal cord-injured laboratory animals, they have continued to develop animal injury and treatment models.

Those efforts have been enhanced in recent weeks now that the UF Brain Institute - a collaborative campuswide organization with more than 280 affiliated researchers - is home to the world's most powerful magnetic resonance imaging system for animals up to the size of 18-pound primates.

In 1997, UF began a small trial testing the feasibility of embryonic nerve tissue transplants in humans for spinal cord injury. While it is too early for results from that study, the work speaks to a potential for regeneration that only recently seemed like a pipe dream.

"Up until 20 years ago, it was thought that spinal cord neurons simply did not have the capacity to regenerate," noted Douglas Anderson, chairman of UF's neuroscience department and a career research scientist with the Malcom Randall Veterans Affairs Medical Center in Gainesville. "But once it was demonstrated that they could grow in the appropriate terrain, the hunt has been on to make that happen."


Story Source:

The above story is based on materials provided by University Of Florida Health Science Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida Health Science Center. "A Molecule Family Hinders Spinal Cord Regeneration, UF Brain Institute Team Finds." ScienceDaily. ScienceDaily, 2 December 1999. <www.sciencedaily.com/releases/1999/12/991201091825.htm>.
University Of Florida Health Science Center. (1999, December 2). A Molecule Family Hinders Spinal Cord Regeneration, UF Brain Institute Team Finds. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/1999/12/991201091825.htm
University Of Florida Health Science Center. "A Molecule Family Hinders Spinal Cord Regeneration, UF Brain Institute Team Finds." ScienceDaily. www.sciencedaily.com/releases/1999/12/991201091825.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins