Featured Research

from universities, journals, and other organizations

Rotational Motion Detected In Gates Controlling Nerve Impulses

Date:
December 17, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
Scientists who performed the first direct measurement of voltage-induced distance changes in ion channels - critical components of the nervous system - have reached a surprising conclusion. As reported in the Dec.16 issue of Nature, the amino acids in the voltage sensor move like keys turning in locks, not like the simple plungers that were predicted by current models.

CHAMPAIGN, Ill. -- Scientists who performed the first direct measurement of voltage-induced distance changes in ion channels - critical components of the nervous system - have reached a surprising conclusion. As reported in the Dec.16 issue of Nature, the amino acids in the voltage sensor move like keys turning in locks, not like the simple plungers that were predicted by current models.

Related Articles


"Within nerve cell membranes, there are special pores - or channels - that regulate the flow of sodium and potassium ions," said Paul Selvin, a professor of physics at the University of Illinois. "The channels open and close like little gates, depending on the voltage across the membrane, and therefore control the generation and propagation of nerve impulses."

Because gene mutations in ion channels can cause neurological disorders, "a better understanding of how these channels work may aid in developing future treatments," said Francisco Bezanilla, the Hagiwara Professor of Neuroscience at the University of California at Los Angeles. "In this study, we wanted to find out how ion channels sense a change in voltage, and how the amino acids within the voltage sensors of the channels move when they open or close." To detect distances between specific sites in a potassium channel, graduate student Albert Cha at UCLA, graduate student Gregory Snyder at the U. of I., Bezanilla and Selvin combined a measurement technique called luminescence resonance energy transfer, developed in the Selvin laboratory, with a molecular biology labeling technique called site-directed mutagenesis. Cha performed the experiments at BezanillaΉs lab at UCLA.

"We labeled particular amino acids within the ion channel, and then measured the change in distance as a function of voltage across the membrane," Bezanilla said. "The separation increased from 26.5 angstroms when the gate was closed, to 29.5 angstroms when the gate was fully open."

To determine the nature of that movement, Cha labeled other nearby sites and repeated their measurements. Surprisingly, some of these other amino acids moved apart, others moved closer together, and still others didnΉt appear to move at all.

"These motions are not consistent with a simple translational movement, like that of a plunger moving up and down within the membrane," Bezanilla said. "But a rotational motion - like the turning of a lock - fits the data nicely."

In both the open and closed states of the channel, there are charges that sit on the amino acids, Selvin said. The twisting of these amino acid segments exposes a different set of charges to the neighboring intracellular or extracellular fluid.

"We think the amino acids form crevice-like invaginations in the cell membrane," Selvin said. "The rotational motion changes the chemical accessibility of the charges from the inside of the cell to the outside of the cell. Thus, a small conformational change can cause a significant effect."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Rotational Motion Detected In Gates Controlling Nerve Impulses." ScienceDaily. ScienceDaily, 17 December 1999. <www.sciencedaily.com/releases/1999/12/991217083528.htm>.
University Of Illinois At Urbana-Champaign. (1999, December 17). Rotational Motion Detected In Gates Controlling Nerve Impulses. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/1999/12/991217083528.htm
University Of Illinois At Urbana-Champaign. "Rotational Motion Detected In Gates Controlling Nerve Impulses." ScienceDaily. www.sciencedaily.com/releases/1999/12/991217083528.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) — Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) — According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) — A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins