Featured Research

from universities, journals, and other organizations

A Little Help From Below: Naturally Occurring Microbes Ready To Lend A Hand Trapping Radioactivity Underground

Date:
December 20, 1999
Source:
Idaho National E & E Laboratory
Summary:
Microbes living underground at the Department of Energy's Idaho National Engineering and Environmental Laboratory can do a little chemistry, which means they may be able to help researchers trap a radioactive contaminant found in the groundwater beneath the lab.

Microbes living underground at the Department of Energy's Idaho National Engineering and Environmental Laboratory can do a little chemistry, which means they may be able to help researchers trap a radioactive contaminant found in the groundwater beneath the lab.

Related Articles


Microbes isolated from groundwater drawn at the lab site break down the compound urea through a process called urea hydrolysis, researchers from INEEL, Idaho State University, and the University of Toronto reported today at the American Geophysical Union meeting in San Francisco. The INEEL specializes in subsurface science as part of its environmental mission.

That means the naturally occurring microbes may be able to change the chemistry of the groundwater so calcite, a mineral found naturally in the rock the water flows through, will accumulate faster than normal. The growing calcite deposits will trap radioactive strontium-90 in their crystal structures.

Researchers hope to inject urea into a contaminated area and let the native microorganisms go to work breaking it down. The resulting buildup of calcite should keep the strontium-90 from spreading. The buildup will remain limited to the area around the injection well and will not interfere with groundwater flow.

"If we can trap strontium-90 in the subsurface, it's not going to keep moving with the groundwater," said INEEL microbiologist Yoshiko Fujita, who reported the results in the Hydrology: Environmental Geochemistry poster session. "We want to stop it in place."

Trapping strontium-90 underground should be cheaper and safer than extracting it, said INEEL geochemist Bob Smith who leads the project. "If you were to do some sort of treatment where you brought it to the surface, you'd have to expose workers, you'd have to ship it, you'd have to pack it," he said.

The researchers hope to contain the contaminant until it has decayed away. Strontium-90 decays with a half-life of 29 years. That means a sample containing strontium-90 will be only half as radioactive after 29 years, only one-quarter as radioactive after 58 years, and so on. After 300 years, 99.9 percent of the radioactivity will have disappeared.

Strontium-90 is a toxic, radioactive substance produced in nuclear reactors. In past decades, some waste-disposal methods have left pockets of low-level radioactive contamination in and above the groundwater at INEEL and other DOE sites.

Proving that naturally occurring microbes break down urea and promote the formation of calcite is the first step in a 3-year, $900,000 DOE-funded project to develop the technique for trapping strontium and other metals in calcite deposits in arid regions of the western United States.

The groundwater in arid regions is often saturated with calcium carbonate. Since the water cannot hold any more of the substance, additional calcium carbonate gradually drops out of solution and forms calcite in the surrounding rock in the same way deposits build up in the pipes of houses with hard water.

Microbes that break down urea should increase the rate at which calcite builds up. When urea is hydrolyzed, the groundwater will become less acidic and more basic, which will reduce the amount of calcium carbonate the water can hold. More calcium carbonate will then precipitate out as calcite.

Growing calcite deposits should draw strontium and other metals out of the groundwater because strontium atoms and other contaminants can replace calcium atoms in the mineral's crystal structure.

The existence of the urea-hydrolyzing microbes suggests nature is willing to help the researchers with their plan. "For every sample of groundwater we tested, there was some hydrolysis of urea," Fujita said. "I think that's important because it shows this is a very common activity. If you rely on a reaction that is rare, your chances of going out in the field and having the method work are slim."

When grown in a medium rich in both urea and calcium carbonate, the isolated microbes precipitate calcite rapidly as they multiply, said microbial geochemist F. Grant Ferris of the University of Toronto. "In our medium, all of the microbes started the precipitation within the first half-hour of growth," he said.

Electron microscope images of the precipitated calcite suggest the mineral grows in globules around the microbes themselves. By serving as seeds for crystal growth, the microbes might further accelerate the rate at which calcite forms.

The researchers hope to begin field tests of the technique in two years. Before then, they must determine the rate at which calcite forms when the microbes are present, whether they should supply the microbes food as well as urea, and whether the precipitation of calcite will be as efficient if the concentrations of calcium carbonate and strontium are reduced from the artificially high levels the researchers have used in the laboratory so far.

The INEEL is managed and operated by Bechtel BWXT, Idaho, LLC (BBWI) for the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Idaho National E & E Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Idaho National E & E Laboratory. "A Little Help From Below: Naturally Occurring Microbes Ready To Lend A Hand Trapping Radioactivity Underground." ScienceDaily. ScienceDaily, 20 December 1999. <www.sciencedaily.com/releases/1999/12/991220081904.htm>.
Idaho National E & E Laboratory. (1999, December 20). A Little Help From Below: Naturally Occurring Microbes Ready To Lend A Hand Trapping Radioactivity Underground. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/1999/12/991220081904.htm
Idaho National E & E Laboratory. "A Little Help From Below: Naturally Occurring Microbes Ready To Lend A Hand Trapping Radioactivity Underground." ScienceDaily. www.sciencedaily.com/releases/1999/12/991220081904.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

China's Toxic Truth Goes Viral

China's Toxic Truth Goes Viral

Reuters - Business Video Online (Mar. 6, 2015) — Pollution in China has gone viral with a documentary highlighting the problems caused by major industries. But awareness may not be enough to clean up dirty producers. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Lack of Snow Pushes Alaska Sled Dog Race North

Lack of Snow Pushes Alaska Sled Dog Race North

AP (Mar. 6, 2015) — A shortage of snow has forced Alaska&apos;s Iditarod Trail Sled Dog Race to move 300 miles north to Fairbanks. The ceremonial start through downtown Anchorage will take place this weekend, using snow stockpiled earlier this winter. (March 6) Video provided by AP
Powered by NewsLook.com
Why Were El Niño Predictions So Far Off Base?

Why Were El Niño Predictions So Far Off Base?

Newsy (Mar. 5, 2015) — Weather agencies say an El Niño event is officially underway, but they called for it months ago and warned it would be way stronger than it is. Video provided by Newsy
Powered by NewsLook.com
Late Winter Storm Wreaks Havoc Across Eastern US

Late Winter Storm Wreaks Havoc Across Eastern US

AP (Mar. 5, 2015) — A strong cold front moving across the eastern U.S. has dumped deep snow in some regions, creating hazardous conditions from Kentucky to New England. (March 5) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins