Featured Research

from universities, journals, and other organizations

Montserrat Volcano's Renewed Activity Aids In Unraveling Mechanism Of Dome Collapse

Date:
January 19, 2000
Source:
Penn State
Summary:
The Soufriere Hills Volcano on Montserrat became active again in November after 19 months of inactivity, and the pattern of volcanic activity seems to have picked up where it left off, according to a Penn State volcanologist.

University Park, Pa. -- The Soufriere Hills Volcano on Montserrat became active again in November after 19 months of inactivity, and the pattern of volcanic activity seems to have picked up where it left off, according to a Penn State volcanologist.

"Although it is not always the case, this volcano is continuing its eruption in the same cyclic, pulsing way as before," says Dr. Barry Voight, professor of geosciences.

The Soufriere Hills Volcano explosively erupted in September 1996 and on June 25, August 3, September 21 and December 26, 1997. In each case the eruption closely followed the collapse of the lava dome.

Lava domes are viscous, sticky masses of magma that pile up high above the vent. Such lava domes can fail in two ways. In some cases, domes can collapse simply because, with sufficient dome growth, the weight of the thick, steeply-sloping lava finally exceeds its interior strength, and the lava mass then breaks apart. Domes can also fail when gases accumulate under the dome, and gas pressures diffuse throughout the dome, weaken it, and promote failure.

The first type of failure commonly causes lava block avalanches, but the second type of failure can generate violent storms of hot ash and gas that can travel many miles and destroy everything in their paths.

"Studies of lava domes on active volcanoes made us realize that domes fail explosively a large percentage of the time," says Voight. "With the Soufriere Hills volcano again going through cycles of pressurization and dome forming, we again have an opportunity to monitor seismic activity and pressurization and refine our mathematical model of gas-pressurized dome failure."

Voight and Dr. Derek Elsworth, professor of geoenvironmental engineering, reported on their model in a recent issue of Geophysical Research Letters. The researchers created gas-diffusion models to calculate gas over pressures in lava domes. These modeled gas pressures were then used in stability analyses to show that gas diffusion causes deep-seated instability in the dome.

Pressure builds up near the vent of the Soufriere Hills volcano and other andesite volcanoes because as the magma rises and pressure reduces, dissolved water bubbles out of the melt and the magma becomes much more viscous. This viscous lava obstructs the path and gas pressures build up.

The diffusion models explain how the gases in the magma wend their way through tight cracks and connected pores to distribute pressure in the dome.

"The mechanism we are suggesting explains why some dome failures do not occur at the first pulse of activity," says Voight. "It takes time for the gas pressures to distribute through the dome, and this can cause an explosive release many hours or days after the first pulse of new lava is detected."

The researchers will continue to work with the Montserrat volcano observatory to interpret the behavior of the dome using seismicity and deformation meters.

"In 1997, about once a day the observatory monitored the concentration of sulfur dioxide gas coming from the volcano," says Voight. "We need to monitor this gas much more frequently, because the lava is being squeezed out in pulses that occur several times daily, and the gas escapes in quantities that are synchronous with the lava output. We need to link up the monitoring effort to this time scale, to capture the variation of gas released over any given day. This quantity is a direct measure of the gas pressure."

Sulfur dioxide monitoring can be done remotely, which is advantageous as the original tilt meters on the shoulder of the crater rim have been destroyed by eruption.

Another area that the researchers would like to explore is the behavior of the magma itself.

"We do not know as much as we need to know about the characteristic behavior of materials that are partly liquid and partly crystalline," says Voight. "These semi-liquids are crystalline enough so that they can actually crack and while they can flow, are mostly solids. The strength and creep properties of these materials are needed for stability assessments, but they are very poorly known."

Andesite magma, the type of lava found at Montserrat and many other volcanoes at convergent plate tectonic boundaries, can be 60 to 80 percent crystalline, while basalt magma, typical of Hawaii, is mostly liquid. Also, andesite magma within a half mile beneath the surface can be a thousand times more viscous than it was three miles down because of bubbling off of water dissolved in the melt crystallization as the magma rises.

The mechanism that Voight and Elsworth suggest for the Soufriere Hills volcano can be applied to lava domes on any andesite volcano that is subject to pressurized gas. Andesite volcanoes are the most common type found on Earth, and pose the greatest hazards to large populations around the Pacific Rim and Mediterranean areas. As to the future of Montserrat, the researchers are less certain.

"The volcano was formerly on a 30-year cycle of seismic crises, related to underground magma activity that never quite reached the surface," says Voight. "But now the volcano seems to have an open system and we cannot yet tell when it will stop or once it stops, when it is likely to start again."


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Montserrat Volcano's Renewed Activity Aids In Unraveling Mechanism Of Dome Collapse." ScienceDaily. ScienceDaily, 19 January 2000. <www.sciencedaily.com/releases/2000/01/000119074958.htm>.
Penn State. (2000, January 19). Montserrat Volcano's Renewed Activity Aids In Unraveling Mechanism Of Dome Collapse. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2000/01/000119074958.htm
Penn State. "Montserrat Volcano's Renewed Activity Aids In Unraveling Mechanism Of Dome Collapse." ScienceDaily. www.sciencedaily.com/releases/2000/01/000119074958.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins